A synthesis of iodo-substituted dibenzocyclohepten-5-ones by the iodine monochloride (or iodine)-induced intramolecular 7-endo-dig cyclization of 1-([1,1'-biphenyl]-2-yl)alkynones is reported. Detailed investigations on the substituent effects during the electrophilic iodocyclization of the alkynones show that they play a crucial role in determining the reaction pathways of the cyclization. By modifying the substitution pattern on the alkynone substrates, the cyclization takes place regioselectively, leading to either dibenzocyclohepten-5-ones, via a 7-endo-dig cyclization, or spiroconjugated compounds, via a 6-endo-dig cyclization.
Tightly-regulated levels of retinoic acid (RA) are critical for promoting normal vertebrate development. The extensive history of research on RA has shown that its proper regulation is essential for cardiac progenitor specification and organogenesis. Here, we discuss the roles of RA signaling and its establishment of networks that drive both early and later steps of normal vertebrate heart development. We focus on studies that highlight the drastic effects alternative levels of RA have on early cardiomyocyte (CM) specification and cardiac chamber morphogenesis, consequences of improper RA synthesis and degradation, and known effectors downstream of RA. We conclude with the implications of these findings to our understanding of cardiac regeneration and the etiologies of congenital heart defects.
Herein, we report the [Bis(trifluoroacetoxy)iodo]benzene mediated C−H bond arylselenylation of 4H‐Pyrido‐[1,2‐a]‐Pyrimidin‐4‐ones using readily available organodiselenides. This methodology is scalable and permits for the generation of a broad spectrum of functionally and structurally diverse selenoether derivatives in very promising yields (up to 98%). Notably, this protocol proceeds at ambient conditions and in the absence of a metal. The application of this methodology for the facile synthesis of ArSe substituted 5H‐thiazolo‐pyrido[3,2‐a]pyrimidin‐4‐ones is also demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.