A history of heavy drinking increases vulnerability to, and the severity of, Alzheimer’s disease (AD) and related dementias, with alcohol use disorder identified as the strongest modifiable risk factor for early-onset dementia. Heavy drinking has increased markedly in women over the past 10 years, particularly in mature adult women during the coronavirus (COVID-19) pandemic. This is concerning as women are more sensitive to many alcohol-related disease states, including AD and related dementias. Herein, we conducted two studies to determine if a 1-month period of binge drinking during mature adulthood (i.e., 5–9 months of age) impairs spatial and working memory to a greater extent in female vs. male C57BL/6J (B6J) mice. The anxiogenic and cognitive-impairing effects of binge drinking were also compared between mature adult and old B6J mice (18 months of age) in a third study. Throughout, females consumed more alcohol than males, indicating that a sex difference in binge drinking persists into old age. Despite the sex difference in intake, we detected no consistent sex difference in our measures of alcohol withdrawal-induced anxiety during a behavioral test battery. Although mature adult females exhibited more cognitive deficits than males, the precise outcome exhibiting a female-selective effect varied across studies. Old mice drank lower amounts of alcohol than mature adult mice, yet their blood ethanol concentrations (BECs) were within error of the 80 mg/dl criterion for binge drinking, indicative of an age-related slowing of alcohol metabolism. As expected, 18-month-old controls exhibited more signs of cognitive impairment than their 6-month-old counterparts, and binge drinking history impaired the Morris water maze performance of mice of both ages. In contrast, binge drinking history impaired the radial arm maze performance of 6-month-old mice only, and the extent of the impairment was comparable to the behavior exhibited by the older mice. We conclude from our studies that: (1) both biological sex and the age of drinking onset are subject factors that impact voluntary alcohol consumption by mice into old age; (2) binge drinking during later life elicits a negative affective state that is relatively sex-independent; (3) binge drinking during both mature adulthood and old age impairs spatial learning and memory; (4) binge drinking during mature adulthood accelerates deficits in working memory; and (5) mature adult females tend to exhibit more alcohol-induced cognitive impairments than males. If relevant to humans, these findings suggest that binge-like drinking by older adult men and women induces a negative affective state and cognitive decline, but that mature adult women, in particular, may be more sensitive to both the immediate and persistent cognitive-impairing effects of heavy drinking.
Methamphetamine (MA) is a highly addictive psychostimulant drug, and the number of MA-related overdose deaths has reached epidemic proportions. Repeated MA exposure induces a robust and persistent neuroinflammatory response, and the evidence supports the potential utility of targeting neuroimmune function using non-selective phosphodiesterase 4 (PDE4) inhibitors as a therapeutic strategy for attenuating addiction-related behavior. Off-target, emetic effects associated with non-selective PDE4 blockade led to the development of isozyme-selective inhibitors, of which the PDE4B-selective inhibitor A33 was demonstrated recently to reduce binge drinking in two genetically related C57BL/6 (B6) substrains (C57BL/6NJ (B6NJ) and C57BL/6J (B6J)) that differ in their innate neuroimmune response. Herein, we determined the efficacy of A33 for reducing MA self-administration and MA-seeking behavior in these two B6 substrains. Female and male mice of both substrains were first trained to nose poke for a 100 mg/L MA solution followed by a characterization of the dose–response function for oral MA reinforcement (20 mg/L–3.2 g/L), the demand-response function for 400 mg/L MA, and cue-elicited MA seeking following a period of forced abstinence. During this substrain comparison of MA self-administration, we also determined the dose–response function for A33 pretreatment (0–1 mg/kg) on the maintenance of MA self-administration and cue-elicited MA seeking. Relative to B6NJ mice, B6J mice earned fewer reinforcers, consumed less MA, and took longer to reach acquisition criterion with males of both substrains exhibiting some signs of lower MA reinforcement than their female counterparts during the acquisition phase of the study. A33 pretreatment reduced MA reinforcement at all doses tested. These findings provide the first evidence that pretreatment with a selective PDE4B inhibitor effectively reduces MA self-administration in both male and female mice of two genetically distinct substrains but does not impact cue-elicited MA seeking following abstinence. If relevant to humans, these results posit the potential clinical utility of A33 or other selective PDE4B inhibitors for curbing active drug-taking in MA use disorder.
Cocaine-induced changes in the expression of the glutamate-related scaffolding protein Homer2 influence this drug’s psychostimulant and rewarding properties. In response to neuronal activity, Homer2 is phosphorylated on S117/S216 by calcium-calmodulin kinase IIα (CaMKIIα), which induces a rapid dissociation of mGlu5-Homer2 scaffolds. Herein, we examined the requirement for Homer2 phosphorylation in cocaine-induced changes in mGlu5-Homer2 coupling, to include behavioral sensitivity to cocaine. For this, mice with alanine point mutations at (S117/216)-Homer2 (Homer2AA/AA) were generated and we determined their affective, cognitive and sensorimotor phenotypes, as well as cocaine-induced changes in conditioned reward and motor hyperactivity. TheHomer2AA/AAmutation prevented activity-dependent phosphorylation of S216 Homer2 in cortical neurons, butHomer2AA/AAmice did not differ from wild-type controls with respect to Morris maze performance, acoustic startle, spontaneous or cocaine-induced locomotion.Homer2AA/AAmice exhibited signs of hypo-anxiety similar to the phenotype of transgenic mice with a deficit in signal-regulated mGluR5 phosphorylation (Grm5AA/AA). However, opposite ofGrm5AA/AAmice,Homer2AA/AAmice were less sensitive to the aversive properties of high-dose cocaine under both place- and taste-conditioning procedures. Acute injection with cocaine caused dissociation of mGluR5 and Homer2 in striatal lysates from WT, but notHomer2AA/AAmice, suggesting a molecular basis for the deficit in cocaine aversion. These findings indicate that CaMKIIα-dependent phosphorylation of Homer2 gates the negative motivational valence of high-dose cocaine via regulation of mGlu5 binding, furthering an important role for dynamic changes in mGlu5-Homer interactions in addiction vulnerability.Significance statementGlobally, psychostimulant use has again risen to reach epidemic proportions, particularly in the United States. Yet, we continue to face a knowledge gap regarding the biological bases of psychostimulant addiction vulnerability to inform disease prognosis and treatment-based recovery. Herein, we show that the psychomotor stimulant cocaine induces the uncoupling of the mGlu5 glutamate receptor from its scaffolding protein Homer2 in brain. Using a transgenic mouse model with deficits cocaine-induced uncoupling of mGlu5-Homer2, we demonstrate an important role for Homer2 scaffolding of mGlu5 in regulating cocaine’s aversive properties, without influencing cocaine reward. Findings suggest that environmental factors, to include cocaine exposure, that affect mGlu5-Homer2 scaffolding dynamics may contribute to an individual’s subjective response to cocaine to influence addiction vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.