79Genetic variation is the fuel of evolution. However, analyzing evolutionary dynamics in 80 natural populations is challenging, sequencing of entire populations remains costly and 81 comprehensive sampling logistically difficult.
Insertions and deletions (indels) are a major source of genetic variation within species and may result in functional changes to coding or regulatory sequences. In this study we report that an indel polymorphism in the 3’ untranslated region (UTR) of the metallothionein gene MtnA is associated with gene expression variation in natural populations of Drosophila melanogaster. A derived allele of MtnA with a 49-bp deletion in the 3' UTR segregates at high frequency in populations outside of sub-Saharan Africa. The frequency of the deletion increases with latitude across multiple continents and approaches 100% in northern Europe. Flies with the deletion have more than 4-fold higher MtnA expression than flies with the ancestral sequence. Using reporter gene constructs in transgenic flies, we show that the 3' UTR deletion significantly contributes to the observed expression difference. Population genetic analyses uncovered signatures of a selective sweep in the MtnA region within populations from northern Europe. We also find that the 3’ UTR deletion is associated with increased oxidative stress tolerance. These results suggest that the 3' UTR deletion has been a target of selection for its ability to confer increased levels of MtnA expression in northern European populations, likely due to a local adaptive advantage of increased oxidative stress tolerance.
Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome datasets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate datasets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in > 20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This dataset, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental meta-data. A web-based genome browser and web portal provide easy access to the SNP dataset. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan dataset. Our resource will enable population geneticists to analyze spatio-temporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.
Drosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here we report fourteen DNA viruses detected in a metagenomic analysis of approximately 6500 pool-sequenced Drosophila, sampled from 47 European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a dsRNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to 12 segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2% or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly-available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D. melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.