is an assistant professor of Engineering Education. He is affiliated with the Engineering Education Transformational Institute and the school of electrical and computer engineering at the university. His interest is at the nexus of the research of epistemologies, learning mechanics and assessment of learning in engineering education. His research focuses on learning for conceptual understanding, and the roles of learning strategies, epistemic cognition and student engagements in fostering conceptual understanding. His research also focuses on understanding how students interact with learning tasks and their learning environment. His expertise also includes systematic reviews and meta-analysis, quantitative research designs, measurement inventories development and validation.
and completed her Ph.D. program in Mechanical Engineering at Auburn University in 2014. Dr. Banu's research interests are in biomechanics and developing innovative instructional materials and techniques. She is Assistant Editor for the Journal of STEM Education: Research and Innovation and affiliated with the Engineering Education Transformation Institute (EETI) at UGA. She is part of the College of Engineering at the University of Georgia since August 2017.
The resistance force of the granular matter is modeled as a linear superposition of a static (quadratic depth-dependent) resistance force and a dynamic (quadratic velocity-dependent) frictional force. The impact is defined from the moment the end point of the system comes in contact with the granular matter surface until the vertical linear velocity of the end point is zero. The variables of interest are the final depth at the end of the penetration phase and the stopping time. The results for a two-link kinematic chain with two points of contact were compared to the results obtained by applying the resistance force formulation developed to corresponding CAD simulation models. The results revealed that the final displacement increases with initial velocity, while the stopping time decreases. The sensitivity to the initial velocity was studied and an improvement to the resistance force formulated as a result. A series of expressions are proposed for the resistance force coefficients.
The coefficient of restitution for the impact of a compound pendulum with a flat surface is an important quantitative measure in contact analysis. The impact is analyzed for different lengths of the pendulum, different angles of impact, and different initial angular velocities of the pendulum. The impact with friction is studied using an elasto plastic force developed by Jackson and Green for the three phases of impact: elastic compression, elasto-plastic compression, and elastic restitution phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.