Cannabis is one of the most commonly used drugs among adolescents, with initial use beginning between the ages of 12 to 17. Although often perceived as a 'soft drug', both short-and long-term use have been associated with numerous adverse outcomes, including cognitive impairment, increased risk of substance abuse, and heightened risk of psychosis or schizophrenia in individuals with a predisposition. Further, the severity of these impairments is closely linked to initiation of use, i.e. earlier use increases risk. It has been suggested that adolescent vulnerability to the adverse consequences of cannabis use is due to ongoing brain development occurring during this time. Indeed, the adolescent brain continues to be remodeled well into adolescence and early adulthood, particularly in the prefrontal cortex (PFC). The medial prefrontal cortex (mPFC) has been implicated in reward processing and decision-making and alterations in mPFC development due to adolescent cannabis exposure could impair these functions. To model the effects of cannabis on mPFC function, we administered the synthetic cannabinoid WIN 55, 212-2 (WIN) to male and female rats from postnatal day 30-60. Once animals reached adulthood, we used a Probabilistic Reward (PR) choice task to elicit PFC activity and measure how patterns of activity to task-related events were modulated by adolescent WIN-treatment. Adult animals showed subtle effects of WIN-treatment on choice patterns. During task performance, mPFC activity elicited by lever press at the time of choices and reward delivery following choices were reduced in WIN-treated animals. This lasting effect of WIN suggests an impairment of the maturation of excitatoryinhibitory balance of signals in mPFC during adolescence, which may alter executive function into adulthood.
The electrographic hallmark of childhood absence seizures is 3 Hz generalized spike and wave discharges; however, there is likely a focal thalamic or cortical onset that cannot be detected using scalp electroencephalography (EEG). The purpose of this study was to study the earliest preictal changes in children with absence epilepsy. In this report, magnetoencephalography recordings of 44 absence seizures recorded from 12 children with drug-naïve childhood absence seizures were used to perform time frequency analysis and source localization prior to the onset of the seizures. Evidence of preictal magnetoencephalography frequency changes were detected a mean of 694 ms before the initial spike on the EEG. A consistent pattern of focal sources was present in the frontal cortex and thalamus during this preictal period, but source localization occurred synchronously so that independent activity between the 2 structures could not be distinguished.
Though commonly used as a treatment for ADHD, the psychostimulant methylphenidate (MPH) is also misused and abused in adolescence in both clinical and general populations. Although MPH acts via pathways activated by other drugs of abuse, the short- and long-term effects of MPH on reward processing in learning and decision-making are not clearly understood. We examined the effect of adolescent MPH treatment on a battery of reward-directed behaviors both in adolescence during its administration and in adulthood after its discontinuation. We further measured whether MPH had lasting effects on dopamine receptor mRNA expression in orbitofrontal cortex (OFC) that may correspond with behavior. Long-Evans rats were injected with MPH (0, 1, 2.5, or 5 mg/kg IP) twice daily from middle to late adolescence (PD38-57). During adolescence, the high dose of MPH reduced preference for large rewards in a Reward Magnitude Discrimination task, but did not affect preference for smaller-sooner rewards in a Delay Discounting task. In adulthood, after discontinuation of MPH, animals previously treated with the moderate dose of MPH showed improved acquisition, but not reversal, in a Reversal Learning task. MPH exposure did not increase preference for large-risky rewards in a Risk task in adulthood. We then quantified mRNA expression of D1, D2, and D3 receptors in the OFC using qPCR. MPH increased mRNA expression of dopamine D3 receptor subtype, but not D1 or D2. Overall, these results indicate that MPH has both immediate and lasting effects on reward-dependent learning and decisions, as well as dopaminergic function in rodents.
Animal models have been used widely to study a broad range of behaviors and disorders. Current animal models provide a window into behavioral mechanisms across the lifespans, allowing researchers to investigate complex epigenetic interactions, cellular processes and the organization and dysregulation of neuronal systems. The present editorial for the special issue of Translational Issues in Psychological Science, "Animal Models as Empirical Foundations for Practice", highlights a few contemporary uses of animal models in psychological science. Here we focus on three articles using animal models to investigate gambling behavior, alcohol abuse and posttraumatic stress related neurobehavioral processes. We close this editorial with the observation that advances in biomedical science will further facilitate the use of animal models as empirical foundations for practice in the psychological sciences.Editor's Note. This is an editorial to the special issue "Animal Models as Empirical Foundations for Practice." Please see the Table of Contents here:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.