Browning of surface waters, as a result of increasing dissolved organic carbon and iron concentrations, is a widespread phenomenon with implications to the structure and function of aquatic ecosystems. In this article, we provide an overview of the consequences of browning in relation to ecosystem services, outline what the underlying drivers and mechanisms of browning are, and specifically focus on exploring potential mitigation measures to locally counteract browning. These topical concepts are discussed with a focus on Scandinavia, but are of relevance also to other regions. Browning is of environmental concern as it leads to, e.g., increasing costs and risks for drinking water production, and reduced fish production in lakes by limiting light penetration. While climate change, recovery from acidification, and land-use change are all likely factors contributing to the observed browning, managing the land use in the hydrologically connected parts of the landscape may be the most feasible way to counteract browning of natural waters.
Factors affecting the establishment of trees in subalpine meadows are important to population dynamics of trees in the alpine tree-line ecotone (ATE). Interactive effects of tree and herb cover on conifer seedlings were investigated in the ATE of the Snowy Range, Wyoming, USA. Microclimate, physiology, and survivorship of first-year conifer seedlings of Pinus albicaulis Engelm., Picea engelmannii Parry, and Abies lasiocarpa Hook. were measured in response to manipulations of surrounding herb and tree cover, as well as water availability. Tree and herb cover had nearly additive effects on survivorship and photosynthesis of conifer seedlings, except under alleviated water stress. In P. albicaulis, photosynthesis was greater near compared with away from trees and herbs, and photosynthetic efficiency (Fv/Fm) increased under herb cover. Tree cover led to greater nighttime temperatures, soil water contents, and, like herb cover, shade from solar radiation for seedlings. We did not detect any negative responses of conifer seedlings to surrounding vegetation. Furthermore, the effect of surrounding vegetation on conifer establishment appeared dependent on the type of surrounding vegetation, the species of conifer, and microsite stress level. These factors may lead to variation in the way conifer seedlings interact with surrounding vegetation and could explain changes in the relative abundances of tree species during forest succession in ATEs.
We reviewed follow-up studies from Finnish and Swedish streams that have been restored after timber floating to assess the abiotic and biotic responses to restoration. More specifically, from a review of 18 case studies (16 published and 2 unpublished), we determined whether different taxonomic groups react differently or require different periods of time to respond to the same type of restoration. Restoration entailed returning coarse sediment (cobbles and boulders) and sometimes large wood to previously channelized turbulent reaches, primarily with the objective of meeting habitat requirements of naturally reproducing salmonid fish. The restored streams showed a consistent increase in channel complexity and retention capacity, but the biotic responses were weak or absent in most species groups. Aquatic mosses growing on boulders were drastically reduced shortly after restoration, but in most studies, they recovered after a few years. Riparian plants, macroinvertebrates and fish did not show any consistent trends in response. We discuss seven alternative explanations to these inconsistent results and conclude that two decades is probably too short a time for most organisms to recover. We recommend long-term monitoring using standardized methods, a landscape-scale perspective and a wider range of organisms to improve the basis for judging to what extent restoration in boreal streams has achieved its goal of reducing the impacts from timber floating.
Improving our ability to detect changes in terrestrial and aquatic systems is a grand challenge in the environmental sciences. In a world experiencing increasingly rapid rates of climate change and ecosystem transformation, our ability to understand and predict how, when, where, and why changes occur is essential for adapting and mitigating human behaviours. In this context, long-term field research infrastructures have a fundamentally important role to play. For northern boreal landscapes, the Krycklan Catchment Study (KCS) has supported monitoring and research aimed at revealing these changes since it was initiated in 1980. Early studies focused on forest regeneration and microclimatic conditions, nutrient balances and forest hydrology, which included monitoring climate variables, water balance components, and stream water chemistry. The research infrastructure has expanded over the years to encompass a 6790 ha catchment, which currently includes 11 gauged streams, ca. 1000 soil lysimeters, 150 groundwater wells, >500 permanent forest inventory plots, and a 150 m tall tower (a combined ecosystem-atmosphere station of the ICOS, Integrated Carbon Observation System) for measurements of atmospheric gas concentrations and biosphere-atmosphere exchanges of carbon, water, and energy. In addition, the KCS has also been the focus of numerous high resolution multi-spectral LiDAR measurements and large scale experiments. This large collection of equipment and data generation supports a range of disciplinary studies, but more importantly fosters multi-, trans-, and interdisciplinary research opportunities. The KCS attracts a broad collection of scientists, including biogeochemists, ecologists, foresters, geologists, hydrologists, limnologists, soil scientists, and social scientists, all of whom bring their knowledge and experience to the site. The combination of long-term monitoring, shorter-term research projects, and large-scale experiments, including manipulations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.