The widespread detection of environmentally persistent perfluorinated acids (PFCAs) such as perfluorooctanoic acid (PFOA) and its longer chained homologues (C9>C15) in biota has instigated a need to identify potential sources. It has recently been suggested that fluorinated telomer alcohols (FTOHs) are probable precursor compounds that may undergo transformation reactions in the environment leading to the formation of these potentially toxic and bioaccumulative PFCAs. This study examined the aerobic biodegradation of the 8:2 telomer alcohol (8:2 FTOH, CF3(CF2)7CH2CH2OH) using a mixed microbial system. The initial measured half-life of the 8:2 FTOH was ∼0.2 days mg-1 of initial biomass protein. The degradation of the telomer alcohol was monitored using a gas chromatograph equipped with an electron capture detector (GC/ECD). Volatile metabolites were identified using gas chromatography/mass spectrometry (GC/MS), and nonvolatile metabolites were identified and quantified using liquid chromatography/tandem mass spectrometry (LC/MS/MS). Telomer acids (CF3(CF2)7CH2COOH; CF3(CF2)6CFCHCOOH) and PFOA were identified as metabolites during the degradation, the unsaturated telomer acid being the predominant metabolite measured. The overall mechanism involves the oxidation of the 8:2 FTOH to the telomer acid via the transient telomer aldehyde. The telomer acid via a β-oxidation mechanism was further transformed, leading to the unsaturated acid and ultimately producing the highly stable PFOA. Telomer alcohols were demonstrated to be potential sources of PFCAs as a consequence of biotic degradation. Biological transformation may be a major degradation pathway for fluorinated telomer alcohols in aquatic systems.
BackgroundCognitive tasks are typically viewed as effortful, frustrating, and repetitive, which often leads to participant disengagement. This, in turn, may negatively impact data quality and/or reduce intervention effects. However, gamification may provide a possible solution. If game design features can be incorporated into cognitive tasks without undermining their scientific value, then data quality, intervention effects, and participant engagement may be improved.ObjectivesThis systematic review aims to explore and evaluate the ways in which gamification has already been used for cognitive training and assessment purposes. We hope to answer 3 questions: (1) Why have researchers opted to use gamification? (2) What domains has gamification been applied in? (3) How successful has gamification been in cognitive research thus far?MethodsWe systematically searched several Web-based databases, searching the titles, abstracts, and keywords of database entries using the search strategy (gamif* OR game OR games) AND (cognit* OR engag* OR behavi* OR health* OR attention OR motiv*). Searches included papers published in English between January 2007 and October 2015.ResultsOur review identified 33 relevant studies, covering 31 gamified cognitive tasks used across a range of disorders and cognitive domains. We identified 7 reasons for researchers opting to gamify their cognitive training and testing. We found that working memory and general executive functions were common targets for both gamified assessment and training. Gamified tests were typically validated successfully, although mixed-domain measurement was a problem. Gamified training appears to be highly engaging and does boost participant motivation, but mixed effects of gamification on task performance were reported.ConclusionsHeterogeneous study designs and typically small sample sizes highlight the need for further research in both gamified training and testing. Nevertheless, careful application of gamification can provide a way to develop engaging and yet scientifically valid cognitive assessments, and it is likely worthwhile to continue to develop gamified cognitive tasks in the future.
Toluene and o-xylene were completely mineralized to stoichiometric amounts of carbon dioxide, methane, and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was creosote-contaminated sediment from Pensacola, Fla. The adaptation periods before the onset of degradation were long (100 to 120 days for toluene degradation and 200 to 255 days for o-xylene). Successive transfers of the toluene-and o-xylene-degrading cultures remained active. Cell density in the cultures progressively increased over 2 to 3 years to stabilize at approximately 109 cells per ml. Degradation of toluene and o-xylene in stable mixed methanogenic cultures followed Monod kinetics, with inhibition noted at substrate concentrations above about 700 FM for o-xylene and 1,800 FM for toluene. The cultures degraded toluene or o-xylene but did not degrade m-xylene, p-xylene, benzene, ethylbenzene, or naphthalene. The degradative activity was retained after pasteurization or after starvation for 1 year. Degradation of toluene and o-xylene was inhibited by the alternate electron acceptors oxygen, nitrate, and sulfate. Degradation was also inhibited by the addition of preferred substrates such as acetate, H2, propionate, methanol, acetone, glucose, amino acids, fatty acids, peptone, and yeast extract. These data suggest that the presence of natural organic substrates or cocontaminants may inhibit anaerobic degradation of pollutants such as toluene and o-xylene at contaminated sites. Soil, sediment, and groundwater are frequently contaminated with petroleum products as a result of leaks in underground storage tanks, improper disposal techniques, and inadvertent spills. Of the many constituents of petroleum, the nonoxygenated, homocyclic aromatic compounds (including benzene, toluene, xylenes, and ethylbenzene) are of particular concern because they are confirmed or suspected carcinogens, even at very low concentrations (6). These compounds are relatively water soluble compared with other components of petroleum and thus frequently migrate through groundwater systems to contaminate drinking water supplies far removed from the actual spill (5, 29). The microbial degradation of compounds such as toluene and benzene under aerobic conditions has been studied in great detail (13, 30); in contrast, the fate of homocyclic aromatic compounds in anaerobic environments is very poorly understood. Until the mid-1980s, it was generally believed that monoaromatic compounds were recalcitrant to degradation under anaerobic conditions. Certain monoaromatic hydrocarbons, most frequently toluene, have since been shown to be degraded by microorganisms under denitrifying (8, 11, 20, 21, 25, 36), iron-reducing (22, 23), sulfate-reducing (2, 10, 17) and methanogenic (16, 32, 33, 34) conditions. We report here the enrichment and maintenance of a mixed culture derived from contaminated aquifer sediments that specifically degrades toluene and o-xylene under methanogenic conditions. The culture has been maintained with toluene or...
Benzene was mineralized to CO2 by aquifer-derived microorganisms under strictly anaerobic conditions. The degradation occurred in microcosms containing gasoline-contaminated subsurface sediment from Seal Beach, California, and anaerobic, sulfide-reduced defined mineral medium supplemented with 20 mM sulfate. Benzene, at initial concentrations ranging from 40 to 200 microM, was depleted in all microcosms and more than 90% of 14C-labeled benzene was mineralized to 14CO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.