Enteropathogenic E. coli (EPEC) belongs to a group of bacterial pathogens that induce epithelial cell actin rearrangements resulting in pedestal formation beneath adherent bacteria. This requires the secretion of specific virulence proteins needed for signal transduction and intimate adherence. EPEC interaction induces tyrosine phosphorylation of a protein in the host membrane, Hp90, which is the receptor for the EPEC outer membrane protein, intimin. Hp90-intimin interaction is essential for intimate attachment and pedestal formation. Here, we demonstrate that Hp90 is actually a bacterial protein (Tir). Thus, this bacterial pathogen inserts its own receptor into mammalian cell surfaces, to which it then adheres to trigger additional host signaling events and actin nucleation. It is also tyrosine-phosphorylated upon transfer into the host cell.
SummaryCD14 is a 55-kD protein found both as a glycosylphosphatidyl inositol-linked protein on the surface of mononudear phagocytes and as a soluble protein in the blood. CD14 on the call membrane (mCD14) has been shown to serve as a receptor for complexes of lipopolysaccharide (LPS) with LPS binding protein, but a function for soluble CD14 (sCD14) has not been described. Here we show that sCD14 enables responses to LPS by cells that do not express CD14. We have examined induction of endothdial-leukocyte adhesion molecule 1 expression by human umbilical vein endothdial cells, interleukin 6 secretion by U373 astrocytoma cells, and cytotoxicity of bovine endothelial ceUs. None of these cell types express mCD14, yet all respond to LPS in a serumdependent fashion, and all responses are completely blocked by anti-CD14 antibodies. Immunodepletion of sCD14 from serum prevents responses to LPS, and the responses are restored by addition of sCD14. These studies suggest that a surface anchor is not needed for the function of CD14 and further imply that sCD14 must bind to additional proteins on the cell surface to associate with the cell and transduce a signal. They also indicate that sCD14 may have an important role in potentiating responses to LPS in cells lacking mCD14.
Intimin and its translocated intimin receptor (Tir) are bacterial proteins that mediate adhesion between mammalian cells and attaching and effacing (A/E) pathogens. Enteropathogenic Escherichia coli (EPEC) causes significant paediatric morbidity and mortality world-wide. A related A/E pathogen, enterohaemorrhagic E. coli (EHEC; O157:H7) is one of the most important food-borne pathogens in North America, Europe and Japan. A unique and essential feature of A/E bacterial pathogens is the formation of actin-rich pedestals beneath the intimately adherent bacteria and localized destruction of the intestinal brush border. The bacterial outer membrane adhesin, intimin, is necessary for the production of the A/E lesion and diarrhoea. The A/E bacteria translocate their own receptor for intimin, Tir, into the membrane of mammalian cells using the type III secretion system. The translocated Tir triggers additional host signalling events and actin nucleation, which are essential for lesion formation. Here we describe the the crystal structures of an EPEC intimin carboxy-terminal fragment alone and in complex with the EPEC Tir intimin-binding domain, giving insight into the molecular mechanisms of adhesion of A/E pathogens.
Type III secretion systems (TTSSs) are multi-protein macromolecular 'machines' that have a central function in the virulence of many Gram-negative pathogens by directly mediating the secretion and translocation of bacterial proteins (termed effectors) into the cytoplasm of eukaryotic cells. Most of the 20 unique structural components constituting this secretion apparatus are highly conserved among animal and plant pathogens and are also evolutionarily related to proteins in the flagellar-specific export system. Recent electron microscopy experiments have revealed the gross 'needle-shaped' morphology of the TTSS, yet a detailed understanding of the structural characteristics and organization of these protein components within the bacterial membranes is lacking. Here we report the 1.8-A crystal structure of EscJ from enteropathogenic Escherichia coli (EPEC), a member of the YscJ/PrgK family whose oligomerization represents one of the earliest events in TTSS assembly. Crystal packing analysis and molecular modelling indicate that EscJ could form a large 24-subunit 'ring' superstructure with extensive grooves, ridges and electrostatic features. Electron microscopy, labelling and mass spectrometry studies on the orthologous Salmonella typhimurium PrgK within the context of the assembled TTSS support the stoichiometry, membrane association and surface accessibility of the modelled ring. We propose that the YscJ/PrgK protein family functions as an essential molecular platform for TTSS assembly.
Human enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and the mouse pathogen Citrobacter rodentium (CR) belong to the family of attaching and effacing (A/E) bacterial pathogens. They possess the locus of enterocyte effacement (LEE) pathogenicity island, which encodes a type III secretion system. These pathogens secrete a number of proteins into culture media, including type III effector proteins and translocators that are required for the translocation of effectors into host cells. Preliminary evidence indicated that the LEE-encoded SepL and Rorf6/SepD may form a molecular switch that controls the secretion of translocators and effectors in CR. Here, we show that SepL and SepD indeed perform this function in A/E pathogens such as EHEC and EPEC. Their sepL and sepD mutants do not secrete translocators but exhibit enhanced secretion of effectors. We demonstrate that SepL and SepD interact with each other and that both SepL and SepD are localized to the bacterial membranes. Furthermore, we demonstrate that culture media influence the type III secretion profile of EHEC, EPEC, and CR and that low-calcium concentrations inhibit secretion of translocators but promote the secretion of effectors, similar to effects on type III secretion by mutations in sepL and sepD. However, the secretion profile of the sepD and sepL mutants is not affected by these culture conditions. Collectively, our results suggest that SepL and SepD not only are necessary for efficient translocator secretion in A/E pathogens but also control a switch from translocator to effector secretion by sensing certain environmental signals such as low calcium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.