SUMMARY Comprehensive multiplatform analysis of 80 uveal melanomas (UM) identifies four molecularly distinct, clinically relevant subtypes: two associated with poor-prognosis monosomy 3 (M3) and two with better-prognosis disomy 3 (D3). We show that BAP1 loss follows M3 occurrence and correlates with a global DNA methylation state that is distinct from D3-UM. Poor-prognosis M3-UM divide into subsets with divergent genomic aberrations, transcriptional features, and clinical outcomes. We report change-of-function SRSF2 mutations. Within D3-UM, EIF1AX- and SRSF2/SF3B1 -mutant tumors have distinct somatic copy number alterations and DNA methylation profiles, providing insight into the biology of these low-versus intermediate-risk clinical mutation subtypes.
Activation in lectin-free interleukin 2 (IL-2) containing supernatants of peripheral blood mononuclear leukocytes (PBL) from cancer patients or normal individuals resulted in expression of cytotoxicity toward 20 of 21 natural killer (NK)-resistant fresh solid tumor cells tested. Fresh solid tumor cells were resistant to NK-mediated lysis in 10 autologous patients' PBL-tumor interactions, and from 17 normal individuals tested against 13 allogeneic fresh tumors. Culture of PBL in IL-2 for 2-3 d was required for the lymphokine activated killers (LAK) to be expressed, and lytic activity toward a variety of NK-resistant fresh and cultured tumor targets developed in parallel. Autologous IL-2 was functional in LAK activation, as well as interferon-depleted IL-2 preparations. Irradiation of responder PBL before culture in IL-2 prevented LAK development. Precursors of LAK were present in PBL depleted of adherent cells and in NK-void thoracic duct lymphocytes, suggesting that the precursor is neither a monocyte nor an NK cell. LAK effectors expressed the serologically defined T cell markers of OKT.3, Leu-1, and 4F2, but did not express the monocyte/NK marker OKM-1. Lysis of autologous fresh solid tumors by LAK from cancer patients' PBL was demonstrated in 85% of the patient-fresh tumor combinations. Our data present evidence that the LAK system is a phenomenon distinct from either NK or CTL systems that probably accounts for a large number of reported nonclassical cytotoxicities. The biological role of LAK cells is not yet known, although it is suggested that these cells may be functional in immune surveillance against human solid tumors.
Little is known about the immune performance and interactions of CNS microglia/macrophages in glioma patients. We found that microglia/macrophages were the predominant immune cell infiltrating gliomas ( approximately 1% of total cells); others identified were myeloid dendritic cells (DCs), plasmacytoid DCs, and T cells. We isolated and analyzed the immune functions of CD11b/c+CD45+ glioma-infiltrating microglia/macrophages (GIMs) from postoperative tissue specimens of glioma patients. Although GIMs expressed substantial levels of Toll-like receptors (TLRs), they did not appear stimulated to produce pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin 1, or interleukin 6), and in vitro, lipopolysaccharides could bind TLR-4 but could not induce GIM-mediated T-cell proliferation. Despite surface major histocompatibility complex class II expression, they lacked expression of the costimulatory molecules CD86, CD80, and CD40 critical for T-cell activation. Ex vivo, we demonstrate a corresponding lack of effector/activated T cells, as glioma-infiltrating CD8+ T cells were phenotypically CD8+CD25-. By contrast, there was a prominent population of regulatory CD4 T cells (CD4+CD25+FOXP3+) infiltrating the tumor. We conclude that while GIMs may have a few intact innate immune functions, their capacity to be stimulated via TLRs, secrete cytokines, upregulate costimulatory molecules, and in turn activate antitumor effector T cells is not sufficient to initiate immune responses. Furthermore, the presence of regulatory T cells may also contribute to the lack of effective immune activation against malignant human gliomas.
Purpose: NRAS and BRAF mutations are common in cutaneous melanomas, although rarely detected mutually in the same tumor. Distinct clinical correlates of these mutations have not been described, despite in vitro data suggesting enhanced oncogenic effects. This study was designed to test the hypothesis that primary human cutaneous melanomas harboring mutations in NRAS or BRAF display a more aggressive clinical phenotype than tumors wild type at both loci.Experimental Design: Microdissection of 223 primary melanomas was carried out, followed by determination of the NRAS and BRAF mutational status. Genotypic findings were correlated with features known to influence tumor behavior including age, gender, Breslow depth, Clark level, mitotic rate, the presence of ulceration, and American Joint Committee on Cancer (AJCC) staging.Results: Breslow depth and Clark level varied significantly among the genotypes, with NRAS mutants showing the deepest levels and wild-type tumors the least depth. Ulceration also differed significantly among the genotypes, with BRAF mutants demonstrating the highest rate. In addition, tumors with mutated NRAS were more likely to be located on the extremities. Patients whose tumors carried either mutation presented with more advanced AJCC stages compared with patients with wild-type tumors, and specifically, were more likely to have stage III disease at diagnosis. Overall survival did not differ among the 3 groups.Conclusions: Distinct clinical phenotypes exist for melanomas bearing NRAS and BRAF mutations, whether considered together or separately, and are associated with features known to predict aggressive tumor behavior. The impact of these mutations is most evident at earlier stages of disease progression.
Melanomas of the choroid, ciliary body, and iris of the eye are collectively known as uveal melanomas. These cancers represent 5% of all melanoma diagnoses in the United States, and their age-adjusted risk is 5 per 1 million population. These less frequent melanomas are dissimilar to their more common cutaneous melanoma relative, with differing risk factors, primary treatment, anatomic spread, molecular changes, and responses to systemic therapy. Once uveal melanoma becomes metastatic, therapy options are limited and are often extrapolated from cutaneous melanoma therapies despite the routine exclusion of patients with uveal melanoma from clinical trials. Clinical trials directed at uveal melanoma have been completed or are in progress, and data from these well designed investigations will help guide future directions in this orphan disease. Cancer 2016;122:2299-312. V C 2016 American Cancer Society.KEYWORDS: breast cancer 1-associated protein 1 (BAP1), choroidal melanoma, diagnosis, guanine nucleotide binding protein a11 (GNA11), guanine nucleotide-binding protein Q polypeptide (GNAQ), ocular melanoma, review, science, treatment, uveal melanoma. BACKGROUND AND EPIDEMIOLOGYUveal melanoma is the most common primary intraocular malignancy. The uveal tract is the pigmented layer of the globe encompassing the iris, ciliary body, and choroid (Fig. 1). The terms choroidal melanoma and ocular melanoma are alternative terms for this cancer, because most of the uveal tract is choroidal. However, the term ocular melanoma should be avoided, because it implies the inclusion of conjunctival and adnexal melanomas, which behave and are managed like cutaneous rather than uveal primaries. Approximately 1500 new cases of uveal melanoma are diagnosed in the United States each year, most commonly arising in the choroid followed by the ciliary body. Iris melanomas are the least common location for uveal melanoma (Fig. 2).1 Although the disease has no sex preference, it is more common in middle-aged Caucasians (median age at presentation, 58 years). Risk factors include the presence of a choroidal nevus, which can be observed in 7% to 8% of the Caucasian population. Certain skin conditions, such as dysplastic nevus syndrome and nevus of Ota, are also associated with uveal melanoma.2 It has been theorized by some investigators that exposure to ultraviolet radiation increases the risk of this neoplasia, but this has not been definitively proven. Whereas certain somatic mutations are associated with neoplastic growth and distant metastasis, the malignancy is not inherited in a traditional genetic fashion, although it is believed that individuals who have germline breast cancer 1 (BRCA1)-associated protein 1 (BAP1) mutations are at higher risk for uveal and cutaneous melanoma as well as mesothelioma and renal cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.