BACKGROUND AND PURPOSESmall-molecule glucokinase activators (GKAs) are currently being investigated as therapeutic options for the treatment of type 2 diabetes (T2D). Because liver overexpression of glucokinase is thought to be associated with altered lipid profiles, this study aimed at assessing the potential lipogenic risks linked to oral GKA administration. EXPERIMENTAL APPROACHNine GKA candidates were qualified for their ability to activate recombinant glucokinase and to stimulate glycogen synthesis in rat hepatocytes and insulin secretion in rat INS-1E cells. In vivo activity was monitored by plasma glucose and HbA1c measurements after oral administration in rodents. Risk-associated effects were assessed by measuring hepatic and plasma triglycerides and free fatty acids, as well as plasma aminotransferases, and alkaline phosphatase. KEY RESULTSGKAs, while efficiently decreasing glycaemia in acute conditions and HbA1c levels after chronic administration in hyperglycemic db/db mice, were potent inducers of hepatic steatosis. This adverse outcome appeared as soon as 4 days after daily oral administration at pharmacological doses and was not transient. GKA treatment similarly increased hepatic triglycerides in diabetic and normoglycaemic rats, together with a pattern of metabolic phenotypes including different combinations of increased plasma triglycerides, free fatty acids, alanine and aspartyl aminotransferases, and alkaline phosphatase. GKAs belonging to three distinct structural families induced hepatic steatosis in db/db mice, arguing in favour of a target-mediated, rather than a chemical class-mediated, effect. CONCLUSION AND IMPLICATIONSGiven the risks associated with fatty liver disease in the general population and furthermore in patients with T2D, these findings represent a serious warning for the use of GKAs in humans.
3 Full agonists such as carbachol and muscarine possessed a ratio ofpotencies against the antagonist versus the agonist ligand (NMS/Oxo-M ratio) of >4000. 4 Compounds which have been shown previously to display partial agonist activity in functional assays e.g. pilocarpine and RS86 had intermediate NMS/Oxo-M ratios of 100-150. A second group of compounds which included oxotremorine had somewhat higher ratios (500-1400). 5 The ratio of affinity constants for the two assays predicted the ability of agonists to stimulate cortical phosphatidyl-inositol turnover. 6 These results suggest that the NMS/Oxo-M ratio may be a useful prediction of efficacy for novel compounds acting at cortical muscarinic receptors.
Recent clinical studies on Alzheimer's patients have implied that only agents displaying high efficacy at the cortical muscarinic receptor have yielded encouraging results. This paper describes the design, synthesis, and biochemical characterization of novel quinuclidine-based muscarinic agonists which can readily penetrate into the central nervous system and which are capable of displaying high efficacy at cortical sites. With use of a biochemical assay capable of measuring receptor affinity and predicting cortical efficacy, it has been discovered that an oxadiazole ring and related heterocycles can function as bioisosteric replacements for the ester moiety found in several known muscarinic ligands. Within this series there exist compounds which span the efficacy range from high-efficacy agonist through partial agonists to antagonists with affinity comparable or superior to that of classical quaternary ammonium ligands. Consistent with recent molecular biology studies, structure-activity trends are interpreted in terms of separate binding sites for agonists and antagonists with H-bonding interactions characterizing agonist behavior and lipophilic binding characterizing antagonist behavior. Thus the aminooxadiazole moiety has structural features which are optimized for an agonist profile.
Phenotyping of Gprc6a KO mice has shown that this promiscuous class C G protein coupled receptor is variously involved in regulation of metabolism, inflammation and endocrine function. Such effects are described as mediated by extracellular calcium, L-amino acids, the bone-derived peptide osteocalcin (OCN) and the male hormone testosterone, introducing the concept of a bone-energy-metabolism-reproduction functional crosstalk mediated by GPRC6A. However, whilst the calcium and L-amino acid-sensing properties of GPRC6A are well established, verification of activity of osteocalcin at both human and mouse GPRC6A in vitro has proven somewhat elusive. This study characterises the in vitro pharmacology of mouse GPRC6A in response to its putative ligands in both recombinant and endogenous GPRC6A-expressing cells. Using cell signalling, and glucagon-like peptide (GLP)-1 and insulin release assays, our results confirm that basic L-amino acids act as agonists of the murine GPRC6A receptor in both recombinant cells and immortalised entero-endocrine and pancreatic β-cells. In contrast, our studies do not support a role for OCN as a direct ligand for mouse GPRC6A, suggesting that the reported in vivo effects of OCN that require GPRC6A may be indirect, rather than via direct activation of the receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.