Understanding the mechanisms controlling recruitment in fishes is a major problem in fisheries science. Although the literature on recruitment mechanisms is large and growing rapidly, it is primarily species specific. There is no conceptual framework to integrate the existing information on larval fish ecology and its relationship to survival and recruitment. In this paper, we propose an integrating framework based on body size. Although all larval fish are small relative to adult fish, total length at hatching differs among species by an order of magnitude. As many of the factors critical to larval survival and growth are size dependent, substantially different expectations arise about which mechanisms might be most important to recruitment success. We examined the evidence for the importance of size to feeding and starvation, to activity and searching ability, and to risk of predation. Regressions based on data from 72 species of marine and freshwater species suggest that body size is an important factor that unifies many of the published observations. A conceptual framework based on body size has the potential to provide a useful integration of the available data on larval growth and survival and a focus for future studies of recruitment dynamics.
Ecologists often assume that dispersing individuals experience increased predation risk owing to increased exposure to predators while moving. To test the hypothesis that predation risk is a function of movement distance or rate of movement, we used radio-telemetry data collected from 193 ruffed grouse (Bonasa umbellus) during 1996-1999 in southeastern Ohio. Cox's proportional hazards model was used to examine whether the risk of predation was affected by the rate of movement and site familiarity. We found evidence indicating that increased movement rates may increase the risk of predation for adult birds but not juveniles. We also found juvenile and adult birds inhabiting unfamiliar space were consistently at a much higher risk of predation (three to 7.5 times greater) than those in familiar space. Our results indicate that although movement itself may have some effect on the risk of being preyed upon, moving through unfamiliar space has a much greater effect on risk for ruffed grouse. This supports the hypothesis that increased predation risk may be an important cost of dispersal for birds.
Meehanisms governing survival, and ultimately seleetion, operate at the level of the individual. Often, the mortality sources that regulate survival are selective, so that some individuals may be more likely to survive than
Although climate warming is expected to benefit temperate ectotherms by lengthening the summer growing season, declines in reproductive success following short, warm winters may counter such positive effects. Here we present long-term (1973–2010) field patterns for Lake Erie yellow perch, Perca flavescens, which show that failed annual recruitment events followed short, warm winters. Subsequent laboratory experimentation and field investigations revealed how reduced reproductive success following short, warm winters underlie these observed field patterns. Following short winters, females spawn at warmer temperatures and produce smaller eggs that both hatch at lower rates and produce smaller larvae than females exposed to long winters. Our research suggests that continued climate warming can lead to unanticipated, negative effects on temperate fish populations.
Abstract1. The use of biomarkers (e.g., genetic, microchemical and morphometric characteristics) to discriminate among and assign individuals to a population can benefit species conservation and management by facilitating our ability to understand population structure and demography.2. Tools that can evaluate the reliability of large genomic datasets for population discrimination and assignment, as well as allow their integration with non-genetic markers for the same purpose, are lacking. Our r package, assignPOP, provides both functions in a supervised machine-learning framework.3. assignPOP uses Monte-Carlo and K-fold cross-validation procedures, as well as principal component analysis, to estimate assignment accuracy and membership probabilities, using training (i.e., baseline source population) and test (i.e., validation) datasets that are independent. A user then can build a specified predictive model based on the relative sizes of these datasets and classification functions, including linear discriminant analysis, support vector machine, naïve Bayes, decision tree and random forest.4. assignPOP can benefit any researcher who seeks to use genetic or non-genetic data to infer population structure and membership of individuals. assignPOP is a freely available r package under the GPL license, and can be downloaded from CRAN or at https://github.com/alexkychen/assignPOP. A comprehensive tutorial can also be found at https://alexkychen.github.io/assignPOP/. K E Y W O R D Sassignment analysis, machine learning, population classification, quantitative genomics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.