Toll-like receptor signaling and subsequent activation of NF-κB-and MAPK-dependent genes during infection play an important role in antimicrobial host defense. The YopJ protein of pathogenic Yersinia species inhibits NF-κB and MAPK signaling, resulting in blockade of NF-κB-dependent cytokine production and target cell death. Nevertheless, Yersinia infection induces inflammatory responses in vivo. Moreover, increasing the extent of YopJ-dependent cytotoxicity induced by Yersinia pestis and Yersinia pseudotuberculosis paradoxically leads to decreased virulence in vivo, suggesting that cell death promotes anti-Yersinia host defense. However, the specific pathways responsible for YopJ-induced cell death and how this cell death mediates immune defense against Yersinia remain poorly defined. YopJ activity induces processing of multiple caspases, including caspase-1, independently of inflammasome components or the adaptor protein ASC. Unexpectedly, caspase-1 activation in response to the activity of YopJ required caspase-8, receptor-interacting serine/threonine kinase 1 (RIPK1), and Fas-associated death domain (FADD), but not RIPK3. Furthermore, whereas RIPK3 deficiency did not affect YopJ-induced cell death or caspase-1 activation, deficiency of both RIPK3 and caspase-8 or FADD completely abrogated Yersinia-induced cell death and caspase-1 activation. Mice lacking RIPK3 and caspase-8 in their hematopoietic compartment showed extreme susceptibility to Yersinia and were deficient in monocyte and neutrophil-derived production of proinflammatory cytokines. Our data demonstrate for the first time to our knowledge that RIPK1, FADD, and caspase-8 are required for YopJ-induced cell death and caspase-1 activation and suggest that caspase-8-mediated cell death overrides blockade of immune signaling by YopJ to promote anti-Yersinia immune defense.innate immunity | apoptosis | programmed necrosis | macrophage | pyroptosis
Niemann-Pick type C1 (NPC) disease is a lysosomal storage disease caused by mutations in the NPC1 gene, leading to an increase in unesterified cholesterol and several sphingolipids, and resulting in hepatic disease and progressive neurological disease. Whereas subcutaneous administration of the pharmaceutical excipient 2-hydroxypropyl-beta-cyclodextrin (HPβCD) ameliorated hepatic disease, doses sufficient to reduce neurological disease resulted in pulmonary toxicity. In contrast, direct administration of HPβCD into the cisterna magna of presymptomatic cats with NPC disease prevented the onset of cerebellar dysfunction for greater than a year and resulted in a reduction in Purkinje cell loss and near normal concentrations of cholesterol and sphingolipids. Moreover, administration of intracisternal HPβCD to NPC cats with ongoing cerebellar dysfunction slowed disease progression, increased survival time, and decreased the accumulation of brain gangliosides. An increase in hearing threshold was identified as a potential adverse effect. Together, these studies in the feline animal model have provided critical data on efficacy and safety of drug administration directly into the CNS that will be important for advancing HPβCD into clinical trials.
Host-microbe interactions may play a fundamental role in the pathogenesis of atopic dermatitis (AD), a chronic relapsing inflammatory skin disorder characterized by universal colonization with Staphylococcus. To examine the relationship between epidermal barrier function and the cutaneous microbiota in AD, this study employed a spontaneous model of canine AD (cAD). In a cohort of 14 dogs with cAD, the skin microbiota was longitudinally evaluated with parallel assessment of skin barrier function at disease flare, during antimicrobial therapy and posttherapy. Sequencing of the bacterial 16S ribosomal RNA gene revealed decreased bacterial diversity and increased proportions of Staphylococcus (S. pseudintermedius in particular) and Corynebacterium in comparison to a cohort of healthy control dogs (n=16). Treatment restored bacterial diversity with decreased Staphylococcus proportions, concurrent with decreased cAD severity. Skin barrier function, as measured by corneometry, pH, and transepidermal water loss (TEWL) also normalized with treatment. Bacterial diversity correlated with TEWL and pH, but not corneometry. These findings provide insights into the relationship between the cutaneous microbiome and skin barrier function in AD, the impact of antimicrobial therapy on the skin microbiome, and highlight the utility of cAD as a spontaneous non-rodent model of AD.
Background: Histiocytic sarcoma is an aggressive neoplasm of dendritic cells that carries a grave prognosis. The efficacy of chemotherapy against this disease is unknown. The purpose of this study was to determine the efficacy of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) in dogs with incompletely resected or metastatic histiocytic sarcoma, to describe the clinical characteristics of these dogs, and to identify factors affecting prognosis.Hypothesis: Our hypothesis is that CCNU has activity against canine histiocytic sarcoma and can improve survival in dogs with advanced disease.Animals: Included in analysis are dogs diagnosed with histiocytic sarcoma who had gross measurable or residual microscopic disease and who received CCNU.Methods: A multi-institutional, retrospective, single-arm cohort study was conducted. Available biopsy samples were tested with an antibody against CD18 when possible to confirm the diagnosis of histiocytic sarcoma.Results: Fifty-nine dogs were treated at 8 institutions. Twenty-three tumor specimens were confirmed to be CD18 positive. Treatment with CCNU at 60 to 90 mg/m 2 resulted in an overall response rate of 46% in the 56 dogs with gross measurable disease. All 3 dogs with minimal residual disease experienced tumor relapse but lived 433 days or more after starting CCNU. The median survival of all 59 dogs was 106 days. Thrombocytopenia (,100,000 platelets/mL) and hypoalbuminemia were found to be negatively associated with prognosis and were predictive of ,1 month survival.Conclusions and Clinical Importance: Results suggest that CCNU is active against canine histiocytic sarcoma and may be useful in the treatment of dogs without negative prognostic factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.