Mammalian ovaries consist of follicles as basic functional units. The total number of ovarian follicles is determined early in life, and the depletion of this pool leads to reproductive senescence. Each follicle develops to either ovulate or, more likely, to undergo degeneration. The dynamics of ovarian follicle development have interested endocrinologists and developmental biologists for many years. With the advent of assisted reproductive techniques in humans, the possibility of regulating follicle development in vivo and in vitro has gained clinical relevance. In this review, we focus upon key branching points during the development of ovarian follicles as well as factors involved in determining the eventual destiny of individual follicles. We discuss inconsistencies in the literature regarding the definitions of follicle recruitment and selection and propose to name the two major steps of follicle development as initial and cyclic recruitment, respectively. Because some of these disparities have arisen due to differences in the animal systems studied, we also compare the development of the ovarian follicles of both humans and rats. We also review the status of knowledge of several puzzling clinical issues that may provide important clues toward unlocking the mechanisms of follicle development.
Mammalian ovaries consist of follicles as basic functional units. The total number of ovarian follicles is determined early in life, and the depletion of this pool leads to reproductive senescence. Each follicle develops to either ovulate or, more likely, to undergo degeneration. The dynamics of ovarian follicle development have interested endocrinologists and developmental biologists for many years. With the advent of assisted reproductive techniques in humans, the possibility of regulating follicle development in vivo and in vitro has gained clinical relevance. In this review, we focus upon key branching points during the development of ovarian follicles as well as factors involved in determining the eventual destiny of individual follicles. We discuss inconsistencies in the literature regarding the definitions of follicle recruitment and selection and propose to name the two major steps of follicle development as initial and cyclic recruitment, respectively. Because some of these disparities have arisen due to differences in the animal systems studied, we also compare the development of the ovarian follicles of both humans and rats. We also review the status of knowledge of several puzzling clinical issues that may provide important clues toward unlocking the mechanisms of follicle development. (Endocrine Reviews 21: 200 -214, 2000)
In the intracellular death program, heteroand homodimerization of different anti-and pro-apoptotic Bcl-2-related proteins are critical in the determination of cell fate. From a rat ovarian fusion cDNA library, we isolated a new pro-apoptotic Bcl-2 gene, Bcl-2-related ovarian killer (Bok). Bok had conserved Bcl-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region present in other Bcl-2 proteins, but lacked the BH4 domain found only in anti-apoptotic Bcl-2 proteins. In the yeast two-hybrid system, Bok interacted strongly with some (Mcl-1, BHRF1, and Bf l-1) but not other (Bcl-2, Bcl-xL, and Bcl-w) anti-apoptotic members. This finding is in direct contrast to the ability of other pro-apoptotic members (Bax, Bak, and Bik) to interact with all of the anti-apoptotic proteins. In addition, negligible interaction was found between Bok and different pro-apoptotic members. In mammalian cells, overexpression of Bok induced apoptosis that was blocked by the baculoviralderived cysteine protease inhibitor P35. Cell killing induced by Bok was also suppressed following coexpression with Mcl-1 and BHRF1 but not with Bcl-2, further indicating that Bok heterodimerized only with selective anti-apoptotic Bcl-2 proteins. Northern blot analysis indicated that Bok was highly expressed in the ovary, testis and uterus. In situ hybridization analysis localized Bok mRNA in granulosa cells, the cell type that underwent apoptosis during follicle atresia. Identification of Bok as a new pro-apoptotic Bcl-2 protein with restricted tissue distribution and heterodimerization properties could facilitate elucidation of apoptosis mechanisms in reproductive tissues undergoing hormone-regulated cyclic cell turnover.
Transgenic mice with deletion of the GDF-9 (growth differentiation factor-9) gene are characterized by the arrest of ovarian follicle development at the primary stage. Based on the hypothesis that GDF-9 is important for early follicle development, we isolated rat GDF-9 complementary DNA (cDNA) and generated recombinant GDF-9 protein to study its physiological role. Using bacteria-derived GDF-9-glutathione S-transferase (GST) fusion protein, specific antibodies to the mature form of GDF-9 was generated. Immunohistochemical staining of ovarian sections indicated the localization of GDF-9 protein in the oocyte of primary, secondary and preantral follicles, whereas immunoblotting demonstrated the secretion of GDF-9 by mammalian cells transfected with GDF-9 cDNAs. Recombinant GDF-9 was shown to be an N-glycosylated protein capable of stimulating early follicle development. Growth of preantral follicles isolated from immature rats was enhanced by treatment with either GDF-9 or FSH whereas the combined treatment showed an additive effect. In addition, treatment with GDF-9, like forskolin, also stimulated inhibin-alpha content in explants of neonatal ovaries. In contrast, the stimulatory effects of GDF-9 were not mimicked by amino-terminal tagged GDF-9 that was apparently not bioactive. Thus, the present study demonstrates the important role of GDF-9 in early follicle growth and differentiation. The availability of recombinant bioactive GDF-9 allows future studies on the physiological role of GDF-9 in ovarian development in vivo.
Müllerian inhibitory substance (MIS), also known as anti-Müllerian hormone, is best known as the hormone that regulates the regression of the Müllerian duct in males. In females, MIS is expressed in granulosa cells of preantral and early antral follicles. The specific MIS type II receptor is present in granulosa and theca cells of these small, growing follicles. Because the role of MIS in preantral follicle development is unknown, we have evaluated the effect of MIS on the growth, differentiation, and apoptosis of intact preantral follicles in a serum-free culture system. In this system, treatment with FSH induces an increase in both follicle diameter, cell number, and follicle cell differentiation based on increased inhibin-alpha synthesis. Of interest, treatment with MIS enhances the effect of FSH both on follicle diameter and cell number. Although treatment with activin A also enhances FSH effects on follicle growth, treatment with transforming growth factor (TGF)-ss inhibits the FSH effects on follicle growth. Based on in situ staining of fragmented DNA, MIS was found to have no effect on follicle cell apoptosis, unlike its proapoptotic action on Müllerian ducts. In contrast to MIS and activin, TGF-ss was a potent proapoptotic factor for preantral follicles in culture. Analysis of inhibin-alpha expression of cultured preantral follicles further indicated that in contrast to activin, treatment with MIS did not enhance FSH-stimulated follicle differentiation. Thus, MIS is a unique factor that promotes preantral follicle growth but not preantral follicle cell differentiation and apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.