Inflammation is a determinant of atherosclerotic plaque rupture, the event leading to most myocardial infarctions and strokes. Although conventional imaging techniques identify the site and severity of luminal stenosis, the inflammatory status of the plaque is not addressed. Positron emission tomography imaging of atherosclerosis using the metabolic marker fluorodeoxyglucose allows quantification of arterial inflammation across multiple vessels. This review sets out the background and current and potential future applications of this emerging biomarker of cardiovascular risk, along with its limitations.
Background-Atherosclerotic plaque rupture is usually a consequence of inflammatory cell activity within the plaque.Current imaging techniques provide anatomic data but no indication of plaque inflammation. The current "gold standard" imaging technique for atherosclerosis is x-ray contrast angiography, which provides high-resolution definition of the site and severity of luminal stenoses, but no information about plaque inflammation.There is a need to quantify plaque inflammation to predict the risk of plaque rupture and to monitor the effects of atheroma-modifying therapies. This is important because recent experimental and clinical studies strongly suggest that hepatic hydroxymethyl glutaryl coenzyme A reductase inhibitors (statins) promote plaque stability by decreasing plaque macrophage content and activity without substantially reducing plaque size and therefore angiographic appearance. 4 [ 18 F]-fluorodeoxyglucose ( 18 FDG) is a glucose analogue that is taken up by cells in proportion to their metabolic activity. 5 We tested the hypothesis that plaque inflammation could be visualized and quantified non-invasively using 18 FDG-PET in patients with symptomatic carotid artery disease. Methods Patient RecruitmentWe recruited 8 patients who had experienced a recent carotidterritory transient ischemic attack and had an internal carotid artery stenosis of at least 70%. Patients were excluded if they had either carotid artery occlusion or diabetes. The study protocol was approved by the local ethics committee and the UK Administration of Radioactive Substances Advisory Committee. All patients gave written informed consent. PET ProtocolPET was carried out using a GE Advance PET scanner (GE Medical Systems). We administered 370 MBq 18 FDG intravenously over 60 seconds. PET images (as 4ϫ5 minute frames) were acquired in 3D mode, at 190 (Ϯ6) minutes after 18 FDG administration. This timepoint was chosen after preliminary dynamic studies indicated that late imaging provided optimal contrast between the 18 FDG concentration in plaque and the main background region, namely blood.A stiff cervical collar was worn to minimize patient movement. PET images were reconstructed using the 3D reprojection algorithm, 6 with corrections applied for attenuation, dead time, scatter, and random coincidences. Rigid body co-registration with CT was performed, using a combination of fiducial markers and internal anatomical landmarks (spinal cord and muscles of the jaw and neck). This resulted in co-registration typically to within 1 mm in each dimension around the stenosis. To estimate plaque 18 FDG concentration, three-dimensional volumes of interest (VOI) were drawn CT ProtocolUsing a GE Hispeed Advantage CT scanner (GE Medical Systems), helical contrast CT angiograms were acquired from skull base to 3 cm below the level of the carotid bifurcation. Plaque HistologyAfter imaging, carotid endarterectomy samples from all 8 patients imaged were fixed and stained with hematoxylin and eosin. Immunohistochemistry was performed using anti-macr...
Vascular calcification is a complex biological process that is a hallmark of atherosclerosis. While macrocalcification confers plaque stability, microcalcification is a key feature of high-risk atheroma and is associated with increased morbidity and mortality. Positron emission tomography and X-ray computed tomography (PET/CT) imaging of atherosclerosis using 18F-sodium fluoride (18F-NaF) has the potential to identify pathologically high-risk nascent microcalcification. However, the precise molecular mechanism of 18F-NaF vascular uptake is still unknown. Here we use electron microscopy, autoradiography, histology and preclinical and clinical PET/CT to analyse 18F-NaF binding. We show that 18F-NaF adsorbs to calcified deposits within plaque with high affinity and is selective and specific. 18F-NaF PET/CT imaging can distinguish between areas of macro- and microcalcification. This is the only currently available clinical imaging platform that can non-invasively detect microcalcification in active unstable atherosclerosis. The use of 18F-NaF may foster new approaches to developing treatments for vascular calcification.
Over time, both the functional and anatomical boundaries of 'Wernicke's area' have become so broad as to be meaningless. We have re-analysed four functional neuroimaging (PET) studies, three previously published and one unpublished, to identify anatomically separable, functional subsystems in the left superior temporal cortex posterior to primary auditory cortex. From the results we identified a posterior stream of auditory processing. One part, directed along the supratemporal cortical plane, responded to both non-speech and speech sounds, including the sound of the speaker's own voice. Activity in its most posterior and medial part, at the junction with the inferior parietal lobe, was linked to speech production rather than perception. The second, more lateral and ventral part lay in the posterior left superior temporal sulcus, a region that responded to an external source of speech. In addition, this region was activated by the recall of lists of words during verbal fluency tasks. The results are compatible with an hypothesis that the posterior superior temporal cortex is specialized for processes involved in the mimicry of sounds, including repetition, the specific role of the posterior left superior temporal sulcus being to transiently represent phonetic sequences, whether heard or internally generated and rehearsed. These processes are central to the acquisition of long- term lexical memories of novel words.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.