In early pancreatic carcinogenesis, TGFβ acts as a tumor suppressor due to its growth-inhibitory effects in epithelial cells. However, in advanced disease, TGFβ appears to promote tumor progression. Therefore, to better understand the contributions of TGFβ signaling to pancreatic carcinogenesis, we generated mouse models of pancreatic cancer with either epithelial or systemic TGFBR deficiency. We found that epithelial suppression of TGFβ signals facilitated pancreatic tumorigenesis, whereas global loss of TGFβ signaling protected against tumor development via inhibition of tumor-associated fibrosis, stromal TGFβ1 production, and the resultant restoration of anti-tumor immune function. Similarly, TGFBR-deficient T cells resisted TGFβ-induced inactivation ex vivo, and adoptive transfer of TGFBR-deficient CD8+ T cells led to enhanced infiltration and GranzymeB-mediated destruction of developing tumors. These findings paralleled our observations in human patients, where TGFβ expression correlated with increased fibrosis and associated negatively with expression of GranzymeB. Collectively, our findings suggest that, despite opposing the proliferation of some epithelial cells, TGFβ may promote pancreatic cancer development by affecting stromal and hematopoietic cell function. Therefore, the use of TGFBR-inhibition to target components of the tumor microenvironment warrants consideration as a potential therapy for pancreatic cancer, particularly in patients who have already lost tumor suppressive TGFβ signals in the epithelium.
TGFβ has both tumor suppressive and tumor promoting effects in colon cancer. Also, TGFβ can affect the extent and composition of inflammatory cells present in tumors, contextually promoting and inhibiting inflammation. While colon tumors display intratumoral inflammation, the contributions of TGFβ to this process are poorly understood. In human patients, we found that epithelial loss of TGFβ signaling was associated with increased inflammatory burden; yet overexpression of TGFβ was also associated with increased inflammation. These findings were recapitulated in mutant APC models of murine tumorigenesis, where epithelial truncation of TGFBR2 led to lethal inflammatory disease and invasive colon cancer, mediated by IL8 and TGFβ1. Interestingly, mutant APC mice with global suppression of TGFβ signals displayed an intermediate phenotype, presenting with an overall increase in IL8-mediated inflammation and accelerated tumor formation, yet with a longer latency to the onset of disease observed in mice with epithelial TGFBR-deficiency. These results suggest that the loss of TGFβ signaling, particularly in colon epithelial cells, elicits a strong inflammatory response and promotes tumor progression. This implies that treating colon cancer patients with TGFβ inhibitors may result in a worse outcome by enhancing inflammatory responses.
<div>Abstract<p>In early pancreatic carcinogenesis, TGFβ acts as a tumor suppressor due to its growth-inhibitory effects in epithelial cells. However, in advanced disease, TGFβ appears to promote tumor progression. Therefore, to better understand the contributions of TGFβ signaling to pancreatic carcinogenesis, we generated mouse models of pancreatic cancer with either epithelial or systemic TGFBR deficiency. We found that epithelial suppression of TGFβ signals facilitated pancreatic tumorigenesis, whereas global loss of TGFβ signaling protected against tumor development via inhibition of tumor-associated fibrosis, stromal TGFβ1 production, and the resultant restoration of antitumor immune function. Similarly, TGFBR-deficient T cells resisted TGFβ-induced inactivation <i>ex vivo</i>, and adoptive transfer of TGFBR-deficient CD8<sup>+</sup> T cells led to enhanced infiltration and granzyme B–mediated destruction of developing tumors. These findings paralleled our observations in human patients, where TGFβ expression correlated with increased fibrosis and associated negatively with expression of granzyme B. Collectively, our findings suggest that, despite opposing the proliferation of some epithelial cells, TGFβ may promote pancreatic cancer development by affecting stromal and hematopoietic cell function. Therefore, the use of TGFBR inhibition to target components of the tumor microenvironment warrants consideration as a potential therapy for pancreatic cancer, particularly in patients who have already lost tumor-suppressive TGFβ signals in the epithelium. <i>Cancer Res; 76(9); 2525–39. ©2016 AACR</i>.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.