Free living amoebae (FLA) are ubiquitous protozoa, which may behave as parasites under certain conditions. Four genera are recognized as causal agents of infections in humans and animals: Naegleria, Sappinia, Acanthamoeba and Balamuthia. This work determines the presence of FLA in combination shower units and employs molecular biology for the characterization of isolates. The morphological analysis and partial sequencing of the 18S rDNA gene revealed the presence of Acanthamoeba genotype T4 in 30% of the units sampled. In addition to Acanthamoeba cysts, trophozoites with morphological characteristics similar to Balamuthia were identified. PCR assay using the mitochondrial 16S rRNA gene as a target confirmed the identification of the amoeba as Balamuthia mandrillaris. Up to date, this is the first report of the isolation of B. mandrillaris in Central America and the fifth report worldwide.
BACKGROUND
Acanthamoeba is the genus of free-living amoebae that is most frequently isolated in nature. To date, 20 Acanthamoeba genotypes have been described. Genotype T4 is responsible for approximately 90% of encephalitis and keratitis cases. Due to the ubiquitous presence of amoebae, isolation from environmental sources is not uncommon; to determine the clinical importance of an isolation, it is necessary to have evidence of the pathogenic potential of amoebae.OBJECTIVEThe aim of this study was to physiologically characterise 8 Acanthamoeba T4 isolates obtained from dental units and emergency combination showers and to determine their pathogenic potential by employing different laboratory techniques.METHODSEight axenic cultures of Acanthamoeba genotype T4 were used in pathogenic potential assays. Osmotolerance, thermotolerance, determination and characterisation of extracellular proteases and evaluation of cytopathic effects in MDCK cells were performed.FINDINGSAll of the isolates were osmotolerant, thermotolerant and had serine proteases from 44-122 kDa. Two isolates had cytopathic effects on the MDCK cell monolayer.MAIN CONCLUSIONThe presence of Acanthamoeba T4 with pathogenic potential in areas such as those tested in this study reaffirms the need for adequate cleaning and maintenance protocols to reduce the possibility of infection with free-living amoebae.
Angiostrongylus costaricensis is a zoonotic parasitic nematode that causes abdominal or intestinal angiostrongyliasis in humans. It is endemic to the Americas. Although the mitochondrial genome of the Brazil taxon has been published, there is no available mitochondrial genome data on the Costa Rica taxon. We report here the complete mitochondrial genome of the Costa Rica taxon and its genetic differentiation from the Brazil taxon. The whole mitochondrial genome was obtained from next-generation sequencing of genomic DNA. It had a total length of 13,652 bp, comprising 36 genes (12 protein-coding genes—PCGs, 2 rRNA and 22 tRNA genes) and a control region (A + T rich non-coding region). It is longer than that of the Brazil taxon (13,585 bp). The larger mitogenome size of the Costa Rica taxon is due to the size of the control region as the Brazil taxon has a shorter length (265 bp) than the Costa Rica taxon (318 bp). The size of 6 PCGs and the start codon for ATP6, CYTB and NAD5 genes are different between the Costa Rica and Brazil taxa. Additionally, the two taxa differ in the stop codon of 6 PCGs. Molecular phylogeny based on 12 PCGs was concordant with two rRNA, 22 tRNA and 36 mitochondrial genes. The two taxa have a genetic distance of p = 16.2% based on 12 PCGs, p = 15.3% based on 36 mitochondrial genes, p = 13.1% based on 2 rRNA genes and p = 10.7% based on 22 tRNA genes, indicating status of sibling species. The Costa Rica and Brazil taxa of A. costaricensis are proposed to be accorded specific status as members of a species complex.
Angiostrongylus costaricensis is the aetiological agent of human abdominal angiostrongyliasis, a parasitic disease reported from the United States to Argentina, with a widespread occurrence of the nematode throughout Central and South America. This study assesses the performance of A. costaricensis eggs as antigen in an enzyme-linked immunosorbent assay (ELISA), for the determination of parasite-specific IgG1 antibodies. The specificity and the sensitivity of the method were 87% and 90.5%, respectively. Through this test it was possible to demonstrate a sharp and early decline in IgG1 antibody in serum samples taken from patients with histopathological diagnosis of abdominal angiostrongyliasis at different time points after surgical treatment. The present work demonstrated the usefulness of the egg antigen in the development of a specific diagnostic test for abdominal angiostrongylosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.