Three phase induction motors (TPIM) are extensively used for various applications in the industry for driving cranes, hoists, lifts, rolling mills, cooling fans, textile operations, and so forth. TPIM are designed to operate on balanced three phase power supply, but sometimes three phase supply line voltages to which the TPIM is connected may be unbalanced. In this data article, the operational data of a TPIM operating under changing voltage scenarios is profiled to determine the variations in the magnitude of the operational parameters of the motor. The magnitude of each of the line voltages was separately varied from the balanced state (0% unbalance) until 5% voltage unbalance condition was achieved, in line with the recommendations and guidelines of the National Electrical Manufactures Association. The motor parameters; both mechanical and electrical, at various slip values were collected in six sets for the 0%, 1%, 2%, 3%, 4%, and 5% unbalance voltage conditions. Frequency distributions and statistical analysis were carried out to identify the data pattern and data variation trends among the parameters in the dataset.
Energy is a key component in the overall growth of every nation. Insufficient energy delivery hinders political growth, restricts social growth, limits economic growth, and negatively affects the standard of living of citizens, both in urban and rural areas. Sufficient energy delivery increases food production, improves the standards of living of citizens, improves healthcare and enhancements in other human services, enhances industrial output, provides effective and efficient transportation not forgetting adequate shelter to the citizens of the nation. Currently, there is a significant level of deficiency in Nigeria's energy sector. This study seeks to address this issue by analysing cost implications of conventional energy source and solar energy source. This study brings to focus the payback period of a solar powered home and the return on investment that might accrue during this time to the residential homeowners. Furthermore, the best cost-effective load sharing option for residential owners considering two energy sources is also obtained.
The burning of fossil fuel for power generation emits Greenhouse gases into the environment. Greenhouse Gases (GHGs) emission is the principal cause of global warming. In order to regulate the emissions of these gases, the emissions need to be assessed and quantified. Carbon footprint is the evaluation of human activities that lead to GHGs emissions. The Covenant University Electricity Network during periods when utility supply fail runs on diesel powered generators located at different centers within the campus. These generators emit carbon-based compounds into the environment. Assessing the quantity of carbon dioxide which is the principal GHGs emitted per year gives 33.14-tonnes. Analysis of the load profiles in the centers showed that all the eight generators are not supposed to be running simultaneously as it is now. This study developed a new network model where all the generators were integrated into a DC microgrid that ensured resource sharing. The model was simulated using energy management and optimization techniques resulting in reduced micro-generators engagement, Green House Gases emission and fuel consumption. Consequently, carbon dioxide emitted per year dropped to 18.44-tonnes from 33.14-tonnes. The developed model improved the carbon footprint of the campus by as much as 44.3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.