(1) High-fat (HF) diet leads to gut microbiota dysbiosis which is associated with systemic inflammation. Bacterial-driven inflammation is sufficient to alter vagally mediated satiety and induce hyperphagia. Promoting bacterial fermentation improves gastrointestinal (GI) epithelial barrier function and reduces inflammation. Resistant starch escape digestion and can be fermented by bacteria in the distal gut. Therefore, we hypothesized that potato RS supplementation in HF-fed rats would lead to compositional changes in microbiota composition associated with improved inflammatory status and vagal signaling. (2) Male Wistar rats (n = 8/group) were fed a low-fat chow (LF, 13% fat), HF (45% fat), or an isocaloric HF supplemented with 12% potato RS (HFRS) diet. (3) The HFRS-fed rats consumed significantly less energy than HF animals throughout the experiment. Systemic inflammation and glucose homeostasis were improved in the HFRS compared to HF rats. Cholecystokinin-induced satiety was abolished in HF-fed rats and restored in HFRS rats. HF feeding led to a significant decrease in positive c fiber staining in the brainstem which was averted by RS supplementation. (4) The RS supplementation prevented dysbiosis and systemic inflammation. Additionally, microbiota manipulation via dietary potato RS prevented HF-diet-induced reorganization of vagal afferent fibers, loss in CCK-induced satiety, and hyperphagia.
There is accumulating evidence that the gut microbiota and its composition dynamics play a crucial role in regulating the host physiological functions and behavior. Diet composition is the primary modulator of bacterial richness and abundance in the gastrointestinal (GI) tract. Macronutrient (fat, sugar and protein) and fiber contents are especially important in determining microbiota composition and its effect on health outcomes and behavior. In addition to food composition, time of intake and eating patterns have recently been shown to significantly affect gut bacterial make up. Diet-driven unfavorable microbiota composition or dysbiosis can lead to an increased production of pro-inflammatory byproducts such as lipopolysaccharide (LPS). Increased inflammatory potential is associated with alteration in gut permeability, resulting in elevated levels of LPS in the bloodstream, or metabolic endotoxemia. We have found that a chronic increase in circulating LPS is sufficient to induce hyperphagia in rodents. Chronic LPS treatment appears to specifically impair the gut-brain axis and vagally-mediated satiety signaling. The vagus nerve relays information on the quantity and quality of nutrients in the GI tract to the nucleus of solitary tract in the brainstem. There is evidence that microbiota dysbiosis is associated with remodeling of the vagal afferent pathway and that normalizing the microbiota composition in high fat diet (HFD) fed rats is sufficient to prevent vagal remodeling. Taken together, these data support a role for the microbiota in regulating gut-brain communication and eating behavior. Bacteria-originating inflammation may play a key role in impairment of diet-driven satiety and the development of hyperphagia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.