The COVID-19 outbreak of 2020 has required many governments to develop and adopt mathematical-statistical models of the pandemic for policy and planning purposes. To this end, this work provides a tutorial on building a compartmental model using Susceptible, Exposed, Infected, Recovered, Deaths and Vaccinated (SEIRDV) status through time. The proposed model uses interventions to quantify the impact of various government attempts made to slow the spread of the virus. Furthermore, a vaccination parameter is also incorporated in the model, which is inactive until the time the vaccine is deployed. A Bayesian framework is utilized to perform both parameter estimation and prediction. Predictions are made to determine when the peak Active Infections occur. We provide inferential frameworks for assessing the effects of government interventions on the dynamic progression of the pandemic, including the impact of vaccination. The proposed model also allows for quantification of number of excess deaths averted over the study period due to vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.