Coastal acidification in southeastern U.S. estuaries and coastal waters is influenced by biological activity, runoff from the land, and increasing carbon dioxide in the atmosphere. Acidification can negatively impact coastal resources such as shellfish, finfish, and coral reefs, and the communities that rely on them. Organismal responses for species located in the U.S. Southeast document large negative impacts of acidification, especially in larval stages. For example, the toxicity of pesticides increases under acidified conditions and the combination of acidification and low oxygen has profoundly negative influences on genes regulating oxygen consumption. In corals, the rate of calcification decreases with acidification and processes such as wound recovery, reproduction, and recruitment are negatively impacted. Minimizing the changes in global ocean chemistry will ultimately depend on the reduction of carbon dioxide emissions, but adaptation to these changes and mitigation of the local stressors that exacerbate global acidification can be addressed locally. The evolution of our knowledge of acidification, from basic understanding of the problem to the emergence of applied research and monitoring, has been facilitated by the development of regional Coastal Acidification Networks (CANs) across the United States. This synthesis is a product of the Southeast Coastal and Ocean Acidification Network (SOCAN). SOCAN was established to better understand acidification in the coastal waters of the U.S. Southeast and to foster communication among scientists, resource managers, businesses, and governments
Global ocean physical and chemical trends are reviewed and updated using seven key ocean climate change indicators: (i) Sea Surface Temperature, (ii) Ocean Heat Content, (iii) Ocean pH, (iv) Dissolved Oxygen concentration (v) Arctic Sea Ice extent, thickness, and volume (vi) Sea Level and (vii) the strength of the Atlantic Meridional Overturning Circulation (AMOC). The globally averaged ocean surface temperature shows a mean warming trend of 0.062 ± 0.013°C per decade over the last 120 years (1900–2019). During the last decade (2010–2019) the rate of ocean surface warming has accelerated to 0.280 ± 0.068°C per decade, 4.5 times higher than the long term mean. Ocean Heat Content in the upper 2,000 m shows a linear warming rate of 0.35 ± 0.08 Wm–2 in the period 1955–2019 (65 years). The warming rate during the last decade (2010–2019) is twice (0.70 ± 0.07 Wm–2) the warming rate of the long term record. Each of the last six decades have been warmer than the previous one. Global surface ocean pH has declined on average by approximately 0.1 pH units (from 8.2 to 8.1) since the industrial revolution (1770). By the end of this century (2100) ocean pH is projected to decline additionally by 0.1–0.4 pH units depending on the RCP (Representative Concentration Pathway) and SSP (Shared Socioeconomic Pathways) future scenario. The time of emergence of the pH climate change signal varies from 8 to 15 years for open ocean sites, and 16–41 years for coastal sites. Global dissolved oxygen levels have decreased by 4.8 petamoles or 2% in the last 5 decades, with profound impacts on local and basin scale habitats. Regional trends are varying due to multiple processes impacting dissolved oxygen: solubility change, respiration changes, ocean circulation changes and multidecadal variability. Arctic sea ice extent has been declining by −13.1% per decade in summer (September) and by −2.6% per decade in winter (March) during the last 4 decades (1979–2020). The combined trends of sea ice extent and sea ice thickness indicate that the volume of non-seasonal Arctic Sea Ice has decreased by 75% since 1979. Global mean sea level has increased in the period 1993–2019 (the altimetry era) at a mean rate of 3.15 ± 0.3 mm year–1 and is experiencing an acceleration of ∼ 0.084 (0.06–0.10) mm year–2. During the last century (1900–2015; 115y) global mean sea level (GMSL) has rised 19 cm, and near 40% of that GMSL rise has taken place since 1993 (22y). Independent proxies of the evolution of the Atlantic Meridional Overturning Circulation (AMOC) indicate that AMOC is at its weakest for several hundreds of years and has been slowing down during the last century. A final visual summary of key ocean climate change indicators during the recent decades is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.