Edited by Karen G. FlemingReceptor protein tyrosine phosphatases (RPTPs) play critical regulatory roles in mammalian signal transduction. However, the structural basis for the regulation of their catalytic activity is not fully understood, and RPTPs are generally not therapeutically targetable. This knowledge gap is partially due to the lack of known natural ligands or selective agonists of RPTPs. Contrary to what is known from structure-function studies of receptor tyrosine kinases (RTKs), RPTP activities have been reported to be suppressed by dimerization, which may prevent RPTPs from accessing their RTK substrates. We report here that homodimerization of protein tyrosine phosphatase receptor J (PTPRJ, also known as DEP-1) is regulated by specific transmembrane (TM) residues. We found that disrupting these interactions destabilizes homodimerization of full-length PTPRJ in cells, reduces the phosphorylation of the known PTPRJ substrate epidermal growth factor receptor (EGFR) and of other downstream signaling effectors, antagonizes EGFR-driven cell phenotypes, and promotes substrate access. We demonstrate these observations in human cancer cells using mutational studies and identified a peptide that binds to the PTPRJ TM domain and represents the first example of an allosteric agonist of RPTPs. The results of our study provide fundamental structural and functional insights into how PTPRJ activity is tuned by TM interactions in cells. Our findings also open up opportunities for developing peptide-based agents that could be used as tools to probe RPTPs' signaling mechanisms or to manage cancers driven by RTK signaling.
Overexpression and deregulation of the epidermal growth factor receptor (EGFR) are implicated in multiple human cancers and therefore are a focus for the development of therapeutics. Current strategies aimed at inhibiting EGFR activity include monoclonal antibodies and tyrosine kinase inhibitors. However, activating mutations severely limit the efficacy of these therapeutics. There is thus a growing need for novel methods to inhibit EGFR. One promising approach involves blocking the association of the cytoplasmic juxtamembrane (JM) domain of EGFR, which has been shown to be essential for receptor dimerization and kinase function. Here, we aim to improve the selectivity and efficacy of an EGFR JM peptide mimic by utilizing the pH(low) insertion peptide (pHLIP), a unique molecule that can selectively target cancer cells solely based on their extracellular acidity. This delivery strategy potentially allows for more selective targeting to tumors than current methods and for anchoring the peptide mimic to the cytoplasmic leaflet of the plasma membrane, increasing its local concentration and thus efficacy. We show that the conjugated construct is capable of inhibiting EGFR phosphorylation and downstream signaling and of inducing concentration- and pH-dependent toxicity in cervical cancer cells. We envision that this approach could be expanded to the modulation of other single-span membrane receptors whose activity is mediated by JM domains.
A growing class of immunotherapeutic agents work by redirecting components of the immune system to recognize specific markers on the surface of cancer cells and initiate a selective immune response. However, such immunotherapeutic modalities will remain confined to a relatively small subgroup of patients until two major hurdles are overcome: (1) the specific targeting of cancer cells relative to healthy cells, and (2) the lack of common targetable tumor biomarkers among all patients. Here, we designed a unique class of agents that exploit the inherent acidic microenvironment of solid tumors to selectively graft the surface of cancer cells with immuno-engager epitopes for directed destruction by components of the immune system. Specifically, conjugates were assembled using an antigen that recruit antibodies present in human serum, and the pH(Low) Insertion Peptide (pHLIP), a unique peptide that selectively target tumors in vivo by anchoring onto cancer cell surfaces in a pHdependent manner. We established that conjugates can recruit antibodies from human serum to the surface of cancer cells, and induce complementdependent and antibody-dependent cellular cytotoxicity by peripheral blood mononuclear cells and also an engineered NK cell line. These results suggest that these agents have the potential to be applicable to treating a wide range of solid tumors and to circumvent the problem of narrow windows of selectivity..
A growing class of immunotherapeutic agents work by redirecting components of the immune system to recognize specific markers on the surface of cancer cells and initiate a selective immune response. However, such immunotherapeutic modalities will remain confined to a relatively small subgroup of patients until two major hurdles are overcome: (1) the specific targeting of cancer cells relative to healthy cells, and (2) the lack of common targetable tumor biomarkers among all patients. Here, we designed a unique class of agents that exploit the inherent acidic microenvironment of solid tumors to selectively graft the surface of cancer cells with immuno-engager epitopes for directed destruction by components of the immune system. Specifically, conjugates were assembled using an antigen that recruit antibodies present in human serum, and the pH(Low) Insertion Peptide (pHLIP), a unique peptide that selectively target tumors in vivo by anchoring onto cancer cell surfaces in a pHdependent manner. We established that conjugates can recruit antibodies from human serum to the surface of cancer cells, and induce complementdependent and antibody-dependent cellular cytotoxicity by peripheral blood mononuclear cells and also an engineered NK cell line. These results suggest that these agents have the potential to be applicable to treating a wide range of solid tumors and to circumvent the problem of narrow windows of selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.