Sucrose synthase (Sus) is a key enzyme in the breakdown of sucrose and is considered a biochemical marker for sink strength, especially in crop species, based on mutational and gene suppression studies. It remains elusive, however, whether, or to what extent, increase in Sus activity may enhance sink development. We aimed to address this question by expressing a potato Sus gene in cotton where Sus expression has been previously shown to be critical for normal seed and fiber development. Segregation analyses at T1 generation followed by studies in homozygous progeny lines revealed that increased Sus activity in cotton (1) enhanced leaf expansion with the effect evident from young leaves emerging from shoot apex; (2) improved early seed development, which reduced seed abortion, hence enhanced seed set, and (3) promoted fiber elongation. In young leaves of Sus overexpressing lines, fructose concentrations were significantly increased whereas, in elongating fibers, both fructose and glucose levels were increased. Since hexoses contribute little to osmolality in leaves, in contrast to developing fibers, it is concluded that high Sus activity promotes leaf development independently of osmotic regulation, probably through sugar signaling. The analyses also showed that doubling the Sus activity in 0-d cotton seeds increased their fresh weight by about 30%. However, further increase in Sus activity did not lead to any further increase in seed weight, indicating an upper limit for the Sus overexpression effect. Finally, based on the observed additive effect on fiber yield from increased fiber length and seed number, a new strategy is proposed to increase cotton fiber yield by improving seed development as a whole, rather than solely focusing on manipulating fiber growth.
Transfection of a functional cloned p53 gene into an L12 p53 nonproducer cell line efficiently reconstituted p53 expression. The p53 protein synthesized in these clones was indistinguishable from that occurring naturally in tumor cells. When a p53 cDNA clone was used instead, we observed that the L12-derived clones exhibited a distinct immunological profile. In the present experiments we compared the immunological epitopes of p53 proteins encoded by several full-length cDNA clones. Immunoprecipitation of p53 proteins generated by in vitro transcription and translation of the various cDNA clones indicated variations in the content of immunological epitopes. Basically, two p53 protein species were detected. Both species contained the same antigenic determinants except the PAb421-PAb122 site, which was present in proteins encoded by p53-Mll and pcD-p53, but not in the p53 protein encoded by the p53-M8 cDNA clone. Sequence analysis of the various cDNA clones indicated the existence of a 96-base-pair (bp) insert in clone p53-M8 as compared with clone p53-Mll or pCD-p53. The 96-bp insert contained a termination signal which caused the premature termination of the protein, leading to the generation of a p53 product 9 amino acids shorter than usual. The existence of this insert also accounted for the lack of the PAb421-PAb122 epitope which was mapped to the 3' end of the cDNA clone, following the 96-bp insert. This insert shared complete homology with the p53 intron 10 sequences mapping 96 bp upstream of the 5' acceptor splicing site of p53 exon 11. It was therefore concluded that the different cDNA clones represented p53 mRNA species which were generated by an alternative splicing mechanism. Differential hybridization of the mRNA population of transformed fibroblastic or lymphoid cells with either the 96-bp synthetic oligonucleotide or the p53-M11 cDNA indicated that the various mRNA species are expressed in vivo.
The human p53 tumor antigen comprises several physically distinct proteins. Two p53 proteins, separable by polyacrylamide gel electrophoresis, are expressed by the human transformed cell line SV-80. The individual cDNAs which code for these proteins were isolated and constructed into the SP6 transcription vector. The proteins encoded by these clones were identified by in vitro transcription with the SP6 vector and translation in a cell-free system. p53-H-1 and p53-H-19 cDNA clones code for the faster-and slower-migrating p53 protein species, respectively, of SV-80. The in vitro-expressed proteins of p53-H-1 and p53-H-19 had the same antigenic determinants and were structurally indistinguishable from their in vivo counterparts. By expressing defined restricted cDNA fragments in vitro, the region of heterogeneity between the respective cDNAs was located at the 5' end of the cDNAs. Exchanging the 5' fragments of interest and expressing the chimeric clones in vitro confirmed that the DNA heterogeneity was responsible for the difference in the electrophoretic mobility of these proteins. The sequences of the two cDNAs revealed a single base pair difference (G versus C) in the coding region of the clones. This sequence difference resulted in an arginine being coded for in clone p53-H-i and a proline being coded for at the equivalent position in clone p53-H-19. This variation accounted for the change in the electrophoretic mobility of the individual p53 protein species.The cellular protein p53 is expressed at low levels in nontransformed cells. When quiescent cultures of such cells are stimulated to proliferate, the amount of p53 is elevated transiently (19,(21)(22)(23)28). In contrast, various types of transformed cells express the protein at elevated levels constitutively (3,4,9,12,16,29,30), which suggested that the protein is involved in transformation.p53 was shown to be a transforming protein by using the L12 nonproducer murine cell line (32,33,36). These cells induce tumors in syngeneic hosts, which subsequently regress. When p53 expression was reconstituted in the cells by the transfection of a functional p53 gene, it induced lethal tumors in the hosts (32, 33). p53 was therefore necessary for expression of the fully transformed phenotype of the cell Iiiie. The protein was also shown to complement an activated Ha-ras gene in the tumorigenic conversion of rat embryo fibroblasts (5, 25) and rat adult chondrocytes (10), demonstrating another facet of the oncogenic character of p53.p53 expression is also enhanced in a number of human transformed cell lines. A salient feature of these cell lines is that they express more than one discrete p53 protein (3). When human primary tumors were screened for p53 with anti-p53 monoclonal antibodies, they too were found to contain several p53 species (27). The study of human p53 has been facilitated by the cloning of human cDNAs (7,17,34,36,37). Analysis of human genomic DNA with these p53 cDNAs revealed a single p53 gene (7,17,36,37 A cDNA library derived from the SV-80 cell li...
Sucrose (Suc) synthase (Sus) is the major enzyme of Suc breakdown for cellulose biosynthesis in cotton (Gossypium hirsutum) fiber, an important source of fiber for the textile industry. This study examines the tissue-specific expression, relative abundance, and temporal expression of various Sus transcripts and proteins present in cotton. A novel isoform of Sus (SusC) is identified that is expressed at high levels during secondary cell wall synthesis in fiber and is present in the cell wall fraction. The phylogenetic relationships of the deduced amino acid sequences indicate two ancestral groups of Sus proteins predating the divergence of monocots and dicots and that SusC sequences form a distinct branch in the phylogeny within the dicotspecific clade. The subcellular location of the Sus isoforms is determined, and it is proposed that cell wall-localized SusC may provide UDP-glucose for cellulose and callose synthesis from extracellular sugars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.