How complex networks of activators and repressors lead to exquisitely specific cell type determination during development is poorly understood. In the Drosophila eye, expression patterns of Rhodopsins define at least eight functionally distinct though related subtypes of photoreceptors. Here, we describe a role for the transcription factor gene defective proventriculus (dve) as a critical node in the network regulating Rhodopsin expression. dve is a shared component of two opposing, interlocked feedforward loops (FFLs). Orthodenticle and Dve interact in an incoherent FFL to repress Rhodopsin expression throughout the eye. In the R7 and R8 photoreceptors, a coherent FFL relieves repression by Dve while activating Rhodopsin expression. Therefore, this network uses repression to restrict, and combinatorial activation to induce cell type-specific expression. Further, Dve levels are finely tuned to yield cell type- and region-specific repression or activation outcomes. This interlocked FFL motif may be a general mechanism to control terminal cell fate specification.
A major question in development is how different specialized cell types arise from a common progenitor. In the adult Drosophila compound eye, color discrimination is achieved by UV-, blue-and green-sensitive photoreceptors (PRs). These different PR subsets arise from neuronal precursors called R7 and R8 cells. Recent studies have demonstrated that R7-based UV-sensitive PRs require the repression of R8-based blue/green-sensitive PR characteristics to properly develop. This repression is mediated by the transcription factor Prospero (Pros). Here, we report that Senseless (Sens), a Drosophila ortholog of the vertebrate Gfi1 transcription factor, plays an opposing role to Pros by both negatively regulating R7-based features and positively enforcing R8-based features during terminal differentiation. In addition, we demonstrate that Pros and Sens function together with the transcription factor Orthodenticle (Otd) to oppositely regulate R7 and R8 PR Rhodopsin gene expression in vitro. These data show that sens, previously shown to be essential for neuronal specification, also controls differentiation of specific neuronal subtypes in the retina. Interestingly, Pros has recently been shown to function as a tumor suppressor, whereas Gfi1 is a well-characterized oncogene. Thus, we propose that sens/pros antagonism is important for regulating many biological processes.
The function and integrity of photoreceptor cells are dependent upon the creation and maintenance of specialized apical structures: membrane discs/outer segments in vertebrates and rhabdomeres in insects. We performed a molecular and morphological comparison of Drosophila Pph13 and orthodenticle (otd) mutants to investigate the transcriptional network controlling the late stages of rhabdomeric photoreceptor cell development and function. Although Otd and Pph13 have been implicated in rhabdomere morphogenesis, we demonstrate that it is necessary to remove both factors to completely eliminate rhabdomere formation. Rhabdomere absence is not the result of degeneration or a failure of initiation, but rather the inability of the apical membrane to transform and elaborate into a rhabdomere. Transcriptional profiling revealed that Pph13 plays an integral role in promoting rhabdomeric photoreceptor cell function. Pph13 regulates Rh2 and Rh6, and other phototransduction genes, demonstrating that Pph13 and Otd control a distinct subset of Rhodopsin-encoding genes in adult visual systems. Bioinformatic, DNA binding and transcriptional reporter assays showed that Pph13 can bind and activate transcription via a perfect Pax6 homeodomain palindromic binding site and the Rhodopsin core sequence I (RCSI) found upstream of Drosophila Rhodopsin genes. In vivo studies indicate that Pph13 is necessary and sufficient to mediate the expression of a multimerized RCSI reporter, a marker of photoreceptor cell specificity previously suggested to be regulated by Pax6. Our studies define a key transcriptional regulatory pathway that is necessary for late Drosophila photoreceptor development and will serve as a basis for better understanding rhabdomeric photoreceptor cell development and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.