To define the role of rare variants in advanced age-related macular degeneration (AMD) risk, we sequenced the exons of 681 genes within AMD-associated loci and pathways in 2,493 cases and controls. We first tested each gene for increased or decreased burden of rare variants in cases compared to controls. We found that 7.8% of AMD cases compared to 2.3% of controls are carriers of rare missense CFI variants (OR=3.6, p=2×10−8). There was a predominance of dysfunctional variants in cases compared to controls. We then tested individual variants for association to disease. We observed significant association with rare missense alleles outside CFI. Genotyping in 5,115 independent samples confirmed associations to AMD with a K155Q allele in C3 (replication p=3.5×10−5, OR=2.8; joint p=5.2×10−9, OR=3.8) and a P167S allele in C9 (replication p=2.4×10−5, OR=2.2; joint p=6.5×10−7, OR=2.2). Finally, we show that the 155Q allele in C3 results in resistance to proteolytic inactivation by CFH and CFI. These results implicate loss of C3 protein regulation and excessive alternative complement activation in AMD pathogenesis, thus informing both the direction of effect and mechanistic underpinnings of this disorder.
Atypical hemolytic uremic syndrome (aHUS) is a disease of complement dysregulation.In approximately 50% of patients, mutations have been described in the genes encoding the complement regulators factor H, MCP, and factor I or the activator factor B. We report here mutations in the central component of the complement cascade, C3, in association with aHUS. We describe 9 novel C3 mutations in 14 aHUS patients with a persistently low serum C3 level. We have dem- IntroductionMutations in the genes encoding the complement regulators factor H, 1-6 factor I, 7,8 and membrane cofactor protein (MCP; CD46), 9,10 as well as in the activating component factor B, 11 have been detected in approximately 50% of patients with atypical hemolytic uremic syndrome (aHUS). 12 A proportion of the remaining patients have persistently low serum levels of C3. In this study we have examined the hypothesis that mutations in the gene encoding C3 could be associated with aHUS in these patients.C3 is the pivotal component of the complement system. 13 Activation of the classical, lectin, and alternative pathways results in cleavage of C3 to generate C3b and the anaphylatoxin C3a. When C3b is produced, the thioester is cleaved, and then this highly reactive species may bind covalently to targets. Interaction of the zymogen factor B with C3b and subsequent cleavage of factor B by factor D results in formation of the alternative pathway C3 convertase C3bBb. This set of reactions represents an amplification loop.A series of complement regulators including factor H and MCP prevent feedback via this loop by increasing the rate of dissociation of C3bBb and/or by serving as cofactors for the serine protease factor I to cleave C3b. Mutations in the gene encoding factor B were recently found to enhance formation of C3bBb or increase resistance to inactivation. 11 The importance of C3 as a susceptibility factor for human disease has been emphasized by recent studies documenting that a common nonsynonymous coding change in C3 (rs2230199, Arg80Gly, corresponding to C3S and C3F) is both a susceptibility factor for age-related macular degeneration 14 and associated with long-term renal allograft survival. 15 Methods SubjectsIn 2 independent cohorts of aHUS patients (Paris, France and Newcastle upon Tyne, United Kingdom), 26 patients (17 Paris, 9 Newcastle) with a serum C3 level persistently below the lower end of the normal range of 680 to 1380 mg/L were identified. In these patients functionally significant mutations in CFH, MCP, CFI, and CFB had not previously been detected. Mutation screening of C3 was undertaken in these patients.Approval for this study was obtained from the Departement de la Rechereche Clinique et du Developement, DRRC Ile de France, France and the Northern and Mutation screeningThe coding sequence of C3 was amplified with flanking primers (Table S1, available on the Blood website; see the Supplemental Materials link at the top of the online article). Direct sequencing was undertaken using a 96-capillary Sequencer 3700 (Applied Biosyst...
Studies on a variety of chemical carcinogens have demonstrated that their ultimate reactive and carcinogenic forms are strong electrophiles. Some carcinogens, such as alkylating agents, are in their ultimate forms as administered, but most require metabolism to these active derivatives. The ultimate carcinogens react, usually non-enzymatically, with nucleophilic constituents in vivo. Of particular interest in regard to their possible importance in carcinogenesis have been the covalent interactions of these electrophilic reactants with cellular informational macromolecules, the DNAs, RNAs, and proteins. Current data are consistent with the idea that the initiation step of chemical carcinogenesis is a mutagenic event and is caused by alteration of DNA by the ultimate carcinogens. The nature of the carcinogen metabolite(s) involved in the promotion phase has not been determined, but there appears to be no requirement that they be electrophilic. The development of the concept of ultimate chemical carcinogens as strong electrophilic reactants is reviewed, especially with respect to the studies carried in the authors' laboratory.
Atypical hemolytic uremic syndrome (aHUS) is a rare renal thrombotic microangiopathy commonly associated with rare genetic variants in complement system genes, unique to each patient/family. Here, we report 14 sporadic aHUS patients carrying the same mutation, R139W, in the complement C3 gene. The clinical presentation was with a rapid progression to end-stage renal disease (6 of 14) and an unusually high frequency of cardiac (8 of 14) and/or neurologic (5 of 14) events. Although resting glomerular endothelial cells (GEnCs) remained unaffected by R139W-C3 sera, the incubation of those sera with GEnC preactivated with proinflammatory stimuli led to increased C3 deposition, C5a release, and procoagulant tissue-factor expression. This functional consequence of R139W-C3 resulted from the formation of a hyperactive C3 convertase. Mutant C3 showed an increased affinity for factor B and a reduced binding to membrane cofactor protein (MCP; CD46), but a normal regulation by factor H (FH). In addition, the frequency of at-risk FH and MCP haplotypes was significantly higher in the R139W-aHUS patients, compared with normal donors or to healthy carriers. These genetic background differences could explain the R139W-aHUS incomplete penetrance. These results demonstrate that this C3 mutation, especially when associated with an at-risk FH and/or MCP haplotypes, becomes pathogenic following an inflammatory endothelium-damaging event. (Blood. 2012;119(18):4182-4191)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.