Amifostine is the most effective radioprotector known and the only one accepted for clinical use in cancer radiotherapy. In this work, the antigenotoxic effect of amifostine against gamma-rays was studied in Escherichia coli cells deficient in DNA damage repair activities. Assays of irradiated cells treated with amifostine showed that the drug reduced the genotoxicity induced by radiation in E. coli wild-type genotypes and in uvr, recF, recB, recB-recC-recF mutant strains, but not in recN defective cells. Thus, the mechanism of DNA protection by amifostine against gamma-radiation-induced genotoxicity appears to involve participation of the RecN protein that facilitates repair of DNA double-strand breaks. The results are discussed in relation to amifostine's chemopreventive potential.
The results have demonstrated the usefulness of the modified SOS Chromotest assay in the screening of phytochemical radioprotectors as well as in the study of their antimutagenic mechanisms.
The analysis of DNA damage by mean of Comet or single cell gel electrophoresis (SCGE) assay has been commonly used to assess genotoxic impact in aquatic animals being able to detect exposure to low concentrations of contaminants in a wide range of species. The aims of this work were 1) to evaluate the usefulness of the Comet to detect DNA strand breakage in dolphin leukocytes, 2) to use the DNA diffusion assay to determine the amount of DNA strand breakage associated with apoptosis or necrosis, and 3) to determine the proportion of DNA strand breakage that was unrelated to apoptosis and necrosis. Significant intra-individual variation was observed in all of the estimates of DNA damage. DNA strand breakage was overestimated because a considerable amount (~29%) of the DNA damage was derived from apoptosis and necrosis. The remaining DNA damage in dolphin leukocytes was caused by factors unrelated to apoptosis and necrosis. These results indicate that the DNA diffusion assay is a complementary tool that can be used together with the Comet assay to assess DNA damage in bottlenose dolphins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.