We use GGA + U methodology to model the bulk and surface structure of varying stoichiometries of the (001) surface of LiCoO2. The DFT energies obtained for these surface-slab models are used for two thermodynamic analyses to assess the relative stabilities of different surface configurations, including hydroxylation. In the first approach, surface free energies are calculated within a thermodynamic framework, and the second approach is a surface-solvent ion exchange model. We find that, for both models, the −CoO–H1/2 surface is the most stable structure near the O-rich limit, which corresponds to ambient conditions. We find that surfaces terminated with Li are higher in energy, and we go on to show that H and Li behave differently on the (001) LiCoO2 surface. The optimized geometries show that terminal Li and H occupy nonequivalent surface sites. In terms of electronic structure, Li and H terminations exhibit distinct bandgap characters, and there is also a distinctive distribution of charge at the surface. We go on to probe how the variable Li and H terminations affect reactivity, as probed through phosphate adsorption studies.
SummaryLineage tracing using Cre/lox transgenic mice provides a powerful tool for studying normal mammary epithelial cell (MEC) development and the cellular origins of mammary tumors under physiological settings. However, generation of new transgenic mice for lineage-tracing purposes is often time consuming. Here, we report a lineage-tracing tool for MECs based on intraductal injection of lineage-specific Cre-expressing adenovirus (Ad-Cre). Using well-characterized promoters for Keratin 8 and Keratin 14, we generated lineage-specific Ad-Cre lines for luminal and basal MECs, respectively. By pulse-chase lineage tracing using these Ad-Cre lines, we showed that luminal and basal lineages are largely self-sustained and that IRS1 and IRS2 are essential for maintaining the basal lineage; we also showed that heterogeneous mammary tumors can be induced from luminal MECs in mice carrying the Etv6-NTRK3 fusion gene. Overall, we validated the Ad-Cre system as a promising and efficient tool for fate mapping of normal and malignant cells in adult tissues.
A commonly overlooked and largely unknown aspect of assessing the environmental and biological safety of engineered nanomaterials is their transformation in aqueous systems. Complex metal oxides are an important class of materials for catalysis, energy storage, and water purification. However, the potential impact of nano complex metal oxides on the environment upon improper disposal is not well understood. We present a comprehensive analysis of the interaction of an environmentally relevant oxyanion, phosphate, with a complex metal oxide nanomaterial, lithium cobalt oxide. Our results show that adsorption of phosphate to the surface of these materials drastically impacts their surface charge, rendering them more stable in aqueous systems. The adsorbed phosphate remains on the surface over significant periods of time, suggesting that desorption is not kinetically favored. The implications of this interaction may be increased dispersibility and bioavailability of these materials in environmental water systems.
Engineered nanoparticles (NPs) can negatively impact biological systems through induced generation of reactive oxygen species (ROS). Overproduced ROS cause biochemical damage and hence need to be effectively buffered by a sophisticated cellular oxidative stress response system. How this complex cellular system, which consists of multiple enzymes, responds to NP-induced ROS is largely unknown. Here, we apply a single cell analysis to quantitatively evaluate 10 key ROS responsive genes simultaneously to understand how the cell prioritizes tasks and reallocates resources in response to NPinduced oxidative stress. We focus on rainbow trout gill epithelial cellsa model cell type for environmental exposureand their response to the massive generation of ROS induced by lithium cobalt oxide (LCO) NPs, which are extensively used as cathode materials in lithium ion batteries. Using multiplexed fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) in single cells, we found a shift in the expression of oxidative stress response genes with initial increase in genes targeting superoxide species, followed by increase in genes targeting peroxide and hydroxyl species. In contrast, Li + and Co 2+ , at concentrations expected to be shed from the NPs, did not induce ROS generation but showed a potent inhibition of transcription for all 10 stress response genes. Taken together, our findings suggest a "two-hit" model for LCO NP toxicity, where the intact LCO NPs induce high levels of ROS that elicit sequential engagement of stress response genes, while the released metal ions suppress the expression of these genes. Consequently, these effects synergistically drive the exposed cells to become more vulnerable to ROS stress and damage.
We simulate the packing of citrate3– and H2citrate– onto gold nanoparticles (AuNPs) to understand how citrate anions cap and stabilize AuNPs. We determine the molecular configurations of citrate on 4, 6, and 8 nm AuNP surfaces as a function of charge state and packing density and find that both the distribution of configurations and maximum packing density are independent of AuNP size. A combination of molecular dynamics simulations and in situ Fourier transform infrared spectroscopy (FTIR) is employed to compare the molecular configurations, stability, and density of citrate on 4 nm citrate-coated (cit-AuNPs) and within polycation-wrapped 4 nm cit-AuNPs. FTIR experiments indicate the presence of H2citrate– within polycation-wrapped cit-AuNPs with coordination between the H2citrate– layer and polycation layer in agreement with simulations. Intermolecular hydrogen bonding between terminal carboxylic acid groups of H2citrate– stabilizes the anionic layer at the interface between cit-AuNPs and adsorbing charged molecules. The calculated total density of H2citrate– on AuNPs decreases from 3.3 × 10–10 to 3.0 × 10–10 mol/cm2 upon adsorption of a polycation due to some displacement of dangling H2citrate– hydrogen bonded to the surface-bound layer. The density of the surface-bound layer is consistently 2.8 × 10–10 mol/cm2 with and without polycation adsorption. We provide all-atom level insight into the distribution and organization of experimentally derived binding modes of citrate on bare and coated cit-AuNPs. The citrate density and surface charge density are determined for all-atom and coarse-grained modeling of cit-AuNPs, their functionalization, and transformations in complex environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.