Advances in computational chemistry create an ongoing need for larger and higher-quality datasets that characterize noncovalent molecular interactions. We present three benchmark collections of quantum mechanical data, covering approximately 3,700 distinct types of interacting molecule pairs. The first collection, which we refer to as DES370K, contains interaction energies for more than 370,000 dimer geometries. These were computed using the coupled-cluster method with single, double, and perturbative triple excitations [CCSD(T)], which is widely regarded as the gold-standard method in electronic structure theory. Our second benchmark collection, a core representative subset of DES370K called DES15K, is intended for more computationally demanding applications of the data. Finally, DES5M, our third collection, comprises interaction energies for nearly 5,000,000 dimer geometries; these were calculated using SNS-MP2, a machine learning approach that provides results with accuracy comparable to that of our coupled-cluster training data. These datasets may prove useful in the development of density functionals, empirically corrected wavefunction-based approaches, semi-empirical methods, force fields, and models trained using machine learning methods.
The oxygen evolution reaction (OER) in alkaline media was investigated on nanostructured FeO, NiO, and NiFeO (Fe-doped, rocksalt NiO, x = 0.05-0.19) electrocatalysts deposited via microplasma on indium tin oxide. A detailed investigation of film morphology, structure, and chemical surface state using SEM, XRD, and XPS, respectively, was carried out to understand catalytic activity, which was assessed using cyclic voltammetry and chronopotentiometry. Iron was seen to be fully incorporated into the parent rocksalt NiO lattice during microplasma deposition, and overpotentials (η) decreased from 360 mV for NiO to 310 mV for NiFeO at 10 mA cm. Interestingly, overpotential did not change significantly for Fe compositions from 5-19%. The NiFeO films displayed relatively low Tafel slopes of 20-30 mV dec at 0.01-1 mA cm, demonstrating their high activity for (OER). Turn-over-frequency (TOF, i.e., O molecules per Ni atom per s) at η = 350 mV revealed a continuous improvement in activity of the NiO surface with increasing Fe content, where values of 0.07 and 0.48 s were measured for undoped NiO and NiFeO films, respectively. Chronopotentiometry measurements followed by SEM and XPS verified that the as-deposited NiFeO catalysts were mechanically and chemically stable for OER under alkaline conditions. This work highlights that microplasma-based deposition is a general approach to realize conformal coatings of nanostructured, doped oxides with high activity for OER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.