Poor fetal growth and associated prepubertal growth acceleration are linked to increased risk of cardiometabolic dysfunction in later life, but whether obesity is integral to ‘catch-up’ growth and its ensuing risks are unknown. In microswine offspring exposed to perinatal maternal protein restriction (MPR), we measured body and organ sizes (during MPR); linear growth and weight gain (birth to 5 months of age); feed intake and utilization efficiency (5–14 weeks); and body composition at 6 and 11 weeks of age (by dual-energy X-ray absorptiometry, DEXA). During MPR, low protein offspring (LPO) showed asymmetric growth restriction with reduced body weight (Wt):length (Lth) at birth and elevated heart Wt:liver Wt ratio by 2 weeks of age. In LPO, after slow early postnatal growth (0–5 weeks), subsequent linear growth on ad libitum normal feed was absolutely accelerated (cm/week; P < 0.001) over 6–11 weeks but normal thereafter, whereas absolute weight gain (kg/week) was similar to controls but accelerated relative to lower LPO nadir weights. Concurrently, rates of fat and lean tissue accrual in LPO over 6–11 weeks were similar to normal protein offspring in absolute terms (g/5 weeks) but increased relative to lower mass at 6 weeks, yielding normal lean:Lth but reduced fat:Lth ratios at 11 weeks. LPO had higher relative feed intake (g/kg/meal) in both sexes and higher feed efficiency in females over 5–11 weeks of age. Findings suggest that postnatal linear growth acceleration preserved thinness in juvenile LPO. Given separately reported abnormalities of vascular (Bagby et al., 2011) and adipocyte function in juvenile LPO, (DuPriest et al., 2011) findings demonstrate that perinatal MPR programs catch-up growth and cardiovascular abnormalities independently of obesity.
Adipose tissue (AT) dysfunction links obesity of any cause with cardiometabolic disease, but whether early-life nutritional deficiency can program adipocyte dysfunction independently of obesity is untested. In 3–5-month-old juvenile microswine offspring exposed to isocaloric perinatal maternal protein restriction (MPR) and exhibiting accelerated prepubertal fat accrual without obesity, we assessed markers of acquired obesity: adiponectin and tumor necrosis factor (TNF)-α messenger ribonucleic acid (mRNA) levels and adipocyte size in intra-abdominal (ABD-AT) and subcutaneous (SC-AT) adipose tissues. Plasma cortisol, leptin and insulin levels were measured in fetal, neonatal and juvenile offspring. In juvenile low-protein offspring (LPO), adipocyte size in ABD-AT was reduced 22% (P=0.011 v. controls), whereas adipocyte size in SC-AT was increased in female LPO (P=0.05) and normal in male LPO; yet, adiponectin mRNA in LPO was low in both sexes and in both depots (P<0.001). Plasma leptin (P=0.004) and cortisol (P<0.05) were reduced only in neonatal LPO during MPR. In juveniles, correlations between % body fat and adiponectin mRNA, TNF-α mRNA or plasma leptin were significant in normal-protein offspring (NPO) but absent in LPO. Plasma glucose in juvenile LPO was increased in males but decreased in females (interaction, P=0.023); plasma insulin levels and insulin sensitivity were unaffected. Findings support nutritional programming of adipocyte size and gene expression and subtly altered glucose homeostasis. Reduced adiponectin mRNA and adipokine dysregulation in juvenile LPO following accelerated growth occurred independently of obesity, adipocyte hypertrophy or inflammatory markers; thus, perinatal MPR and/or growth acceleration can alter adipocyte structure and disturb adipokine homeostasis in metabolically adverse patterns predictive of enhanced disease risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.