It is now widely accepted that global climate change is affecting many ecosystems around the globe and that its impact is increasing rapidly. Many studies predict that impacts will consist largely of shifts in latitudinal and altitudinal distributions. However, we demonstrate that the impacts of global climate change in the tropical rainforests of northeastern Australia have the potential to result in many extinctions. We develop bioclimatic models of spatial distribution for the regionally endemic rainforest vertebrates and use these models to predict the effects of climate warming on species distributions. Increasing temperature is predicted to result in significant reduction or complete loss of the core environment of all regionally endemic vertebrates. Extinction rates caused by the complete loss of core environments are likely to be severe, nonlinear, with losses increasing rapidly beyond an increase of 2°C, and compounded by other climate-related impacts. Mountain ecosystems around the world, such as the Australian Wet Tropics bioregion, are very diverse, often with high levels of restricted endemism, and are therefore important areas of biodiversity. The results presented here suggest that these systems are severely threatened by climate change.
Abstract. The purpose of this data set was to compile distributional, general life-history characteristics and phylogenies for Australian tropical rain forest vertebrates to inform a wide range of comparative studies on the determinants of biodiversity patterns and to assess the impacts of global climate change. We provide three distinct data sets: (1) a table of speciesspecific distributional and life-history traits for 242 vertebrate species found in the rain forests of the Australian Wet Tropics; (2) species distribution maps (GIS raster files) for 202 of the species displaying both the realized and potential distributions; and (3) phylogenies for these species. These species represent 93 birds, 31 amphibians, 31 mammals (including one monotreme), and 47 reptiles. Where information exists, the distributional and life-history data compiled here present information on: indices of environmental specialization (ENFA), habitat specialization, average body mass and size, sexual dimorphism, reproductive characteristics such as age at first reproduction, clutch/litter size, number of reproductive bouts per year and breeding seasonality, longevity, time of day when most active, and dispersal ability; distributional characteristics such as range size (potential and realized for both total and core ranges) and observed ranges in temperature, precipitation, and elevation; and niche attributes such as environmental marginality and specialization. The distribution maps provided represent a combination of presence-only ecological niche modeling (using MaxEnt) to estimate the potential distribution of a species followed by biogeographic clipping by expert opinion based on extensive field data and a subregional classification relevant to the topography and biogeographic history of the region to produce best-possible estimates of the realized distribution. Our assemblage contains many species with a shared evolutionary history, and thus many analyses of these data will need to account for phylogeny. Although a comprehensive phylogeny with branch length information does not exist for this diverse group of species, we present a best-estimate composite phylogeny constructed primarily from recently published molecular phylogenies of included groups.
The future impacts of climate change are predicted to significantly affect the survival of many species. Recent studies indicate that even species that are relatively mobile and/or have large geographic ranges may be at risk of range contractions or extinction. An ecologically and evolutionary significant group of mammals that has been largely overlooked in this research is Australia's large marsupial herbivores, the macropodids (kangaroos). The aims of our investigation were to define and compare the climatic conditions that influence the current distributions of four sympatric large macropodids in northern Australia (Macropus antilopinus, Macropus robustus, Macropus giganteus, and Macropus rufus) and to predict the potential future impact of climate change on these species. Our results suggest that contemporary distributions of these large macropodids are associated with well-defined climatic gradients (tropical and temperate conditions) and that climatic seasonality is also important. Bioclimatic modeling predicted an average reduction in northern Australian macropodid distributions of 48% +/- 16.4% in response to increases of 2.0 degrees C. At this temperature, the distribution of M. antilopinus was reduced by 89% +/-0.4%. We predict that increases of 6.0 degrees C may cause severe range reductions for all four macropodids (96% +/-2.1%) in northern Australia, and this range reduction may result in the extinction of M. antilopinus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.