We have examined codon bias in 207 plant gene sequences collected from Genbank and the literature. When this sample was further divided into 53 monocot and 154 dicot genes, the pattern of relative use of synonymous codons was shown to differ between these taxonomic groups, primarily in the use of G + C in the degenerate third base. Maize and soybean codon bias were examined separately and followed the monocot and dicot codon usage patterns respectively. Codon preference in ribulose 1,5 bisphosphate and chlorophyll a/b binding protein, two of the most abundant proteins in leaves was investigated. These highly expressed are more restricted in their codon usage than plant genes in general.
We have purified factors from HeLa cell nuclear extracts that bind to the transcriptional initiation site of the SV40 major late promoter (SV40- [Key Words: HeLa cell nuclear extract; initiator binding protein of SV40; replication-dependent transcription; steroid-thyroid hormone receptor superfamily; SV40 major late promoter]-
A genomic clone that specifies a single polypeptide precursor for ricin, a toxic lectin of Ricinus communis (castor bean), was isolated, sequenced and Sl mapped. The gene encodes a 64 kDa precursor which contains, in the following order: a 24 or 35 amino acid signal peptide, the A chain, a 12 amino acid linker peptide, and the B chain. The 5'-end of the ricin mRNA maps approximately 35 bases upstream from the first methionine codon. Two putative TATA boxes and a possible CAAT box lie in the 5'-flanking region. Two possible polyadenylation signals were found in the 3' flanking region. No introns were found, which is typical of other lectin genes that have been sequenced. Southern blot analysis suggests that the castor bean genome contains approximately six ricin-like genes.
Cotton (Gossypium hirsutum L.) cotyledon tissues have been efficiently transformed and plants have been regenerated. Cotyledon pieces from 12-day-old aseptically germinated seedlings were inoculated with Agrobacterium tumefaciens strains containing avirulent Ti (tumor-inducing) plasmids with a chimeric gene encoding kanamycin resistance. After three days cocultivation, the cotyledon pieces were placed on a callus initiation medium containing kanamycin for selection. High frequencies of transformed kanamycin-resistant calli were produced, more than 80% of which were induced to form somatic embryos. Somatic embryos were germinated, and plants were regenerated and transferred to soil. Transformation was confirmed by opine production, kanamycin resistance, immunoassay, and DNA blot hybridization. This process for producing transgenic cotton plants facilitates transfer of genes of economic importance to cotton.
We have examined expression of several insecticidal crystal protein (ICP) genes of Bacillus thuringiensis in transgenic tobacco plants and electroporated carrot protoplasts. We determined that low levels of lepidopteran toxin cryIA(b) ICP gene expression in plants and electroporated carrot cells is due to RNA instability. We used a series of 3' deleted by cryIA(b) constructs directed by the cauliflower mosaic virus 35S promoter to demonstrate that this instability is minimally contained in the first 579 bases of the gene in both systems. This instability may result from 5'----3' as well as 3'----5' RNA metabolism. The coleopteran toxic cryIIIA gene was also examined in electroporated carrot cells, and found to be poorly expressed. A model for improvement of ICP RNA stability in plants is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.