Supported lipid bilayers (SLBs) have contributed invaluable information about the physiochemical properties of cell membranes, but their compositional simplicity often limits the level of knowledge that can be gained about the structure and function of transmembrane proteins in their native environment. Herein, we demonstrate a generic protocol for producing polymer-supported lipid bilayers on glass surfaces that contain essentially all naturally occurring cell-membrane components of a cell line while still retaining transmembrane protein mobility and activity. This was achieved by merging vesicles made from synthetic lipids (PEGylated lipids and POPC lipids) with native cell-membrane vesicles to generate hybrid vesicles which readily rupture into a continuous polymer-supported lipid bilayer. To investigate the properties of these complex hybrid SLBs and particularly the behavior of their integral membrane-proteins, we used total internal reflection fluorescence imaging to study a transmembrane protease, β-secretase 1 (BACE1), whose ectoplasmic and cytoplasmic domains could both be specifically targeted with fluorescent reporters. By selectively probing the two different orientations of BACE1 in the resulting hybrid SLBs, the role of the PEG-cushion on transmembrane protein lateral mobility was investigated. The results reveal the necessity of having the PEGylated lipids present during vesicle adsorption to prevent immobilization of transmembrane proteins with protruding domains. The proteolytic activity of BACE1 was unadulterated by the sonication process used to merge the synthetic and native membrane vesicles; importantly it was also conserved in the SLB. The presented strategy could thus serve both fundamental studies of membrane biophysics and the production of surface-based bioanalytical sensor platforms.
The size distribution of domains in phase-separated lung surfactant monolayers influences monolayer viscoelasticity and compressibility which, in turn, influence monolayer collapse and set the compression at which the minimum surface tension is reached. The surfactant-specific protein SP-B decreases the mean domain size and polydispersity as shown by fluorescence microscopy. From the images, the line tension and dipole density difference are determined by comparing the measured size distributions with a theory derived by minimizing the free energy associated with the domain energy and mixing entropy. We find that SP-B increases the line tension, dipole density difference, and the compressibility modulus at surface pressures up to the squeeze-out pressure. The increase in line tension due to SP-B indicates the protein avoids domain boundaries due to its solubility in the more fluid regions of the film.
Highlights d The expression domain of the Dorsal target gene sog narrows in the absence of Zelda d Using MS2 reporter transgenes, this can be accurately recapitulated in living embryos d Without Zelda, the onset and degree of reporter activation becomes graded like Dorsal d Zelda promotes accumulation of Dorsal protein at the site of the enhancer
Thermodynamic models of gene regulation can predict transcriptional regulation in bacteria, but in eukaryotes chromatin accessibility and energy expenditure may call for a different framework. Here we systematically tested the predictive power of models of DNA accessibility based on the Monod-Wyman-Changeux (MWC) model of allostery, which posits that chromatin fluctuates between accessible and inaccessible states. We dissected the regulatory dynamics of hunchback by the activator Bicoid and the pioneer-like transcription factor Zelda in living Drosophila embryos and showed that no thermodynamic or non-equilibrium MWC model can recapitulate hunchback transcription. Therefore, we explored a model where DNA accessibility is not the result of thermal fluctuations but is catalyzed by Bicoid and Zelda, possibly through histone acetylation, and found that this model can predict hunchback dynamics. Thus, our theory-experiment dialogue uncovered potential molecular mechanisms of transcriptional regulatory dynamics, a key step toward reaching a predictive understanding of developmental decision-making.
squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack-the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of lowand high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low-and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 + 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 + 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte system can be used as a model system to quantify the effects of various methods of tissue fixation. The microspectrophotometry technique described can be expected to provide deeper insights into the molecular and physical mechanisms governing other biophotonically active cells and structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.