Both normal and diseased cells continuously shed extracellular vesicles (EVs) into extracellular space, and the EVs carry molecular signatures and effectors of both health and disease. EVs reflect dynamic changes that are occurring in cells and tissue microenvironment in health and at a different stage of a disease. EVs are capable of altering the function of the recipient cells. Trafficking and reciprocal exchange of molecular information by EVs among different organs and cell types have been shown to contribute to horizontal cellular transformation, cellular reprogramming, functional alterations, and metastasis. EV contents may include tumor suppressors, phosphoproteins, proteases, growth factors, bioactive lipids, mutant oncoproteins, oncogenic transcripts, microRNAs, and DNA sequences. Therefore, the EVs present in biofluids offer unprecedented, remote, and non-invasive access to crucial molecular information about the health status of cells, including their driver mutations, classifiers, molecular subtypes, therapeutic targets, and biomarkers of drug resistance. In addition, EVs may offer a non-invasive means to assess cancer initiation, progression, risk, survival, and treatment outcomes. The goal of this review is to highlight the current status of information on the role of EVs in cancer, and to explore the utility of EVs for cancer diagnosis, prognosis, and epidemiology.
Chronic inflammation is recognized to play a role in the development of several cancers. Past investigations of inflammation and cancer have typically been small, used varied assay platforms, and included a narrow range of analytes. Multiplex technologies have now been developed to measure larger numbers of inflammatory markers using small volumes of specimens. This has created an opportunity for systematic, large-scale epidemiological studies to evaluate the role of inflammation in cancer. However, lack of consensus on the approach to these studies, the technologies/assays to be used, and the most adequate analysis/interpretation of findings have thus far hindered progress. In June of 2014, the National Cancer Institute convened a workshop involving epidemiologists, immunologists, statisticians, and laboratory biologists to share their experiences with new inflammation marker technologies and findings from association studies using such methods and technologies (http://epi.grants.cancer.gov/workshops/). Consensus and gaps in our understanding of the role of chronic inflammation in cancer were identified and recommendations made to improve future efforts in this area. These recommendations are summarized herein, along with specific suggestions for how they may be implemented. By facilitating discussions among various groups, and encouraging interdisciplinary collaborations, we anticipate that the pace of research in this field will be accelerated and duplication of efforts can be minimized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.