Feedback mechanisms in operant learning are critical for animals to increase reward or reduce punishment. However, not all conditions have a behavior that can readily resolve an event. Animals must then try out different behaviors to better their situation through outcome learning. This form of learning allows for novel solutions and with positive experience can lead to unexpected behavioral routines. Learned helplessness, as a type of outcome learning, manifests in part as increases in escape latency in the face of repeated unpredicted shocks. Little is known about the mechanisms of outcome learning. When fruit fly Drosophila
melanogaster are exposed to unpredicted high temperatures in a place learning paradigm, flies both increase escape latencies and have a higher memory when given control of a place/temperature contingency. Here we describe discrete serotonin neuronal circuits that mediate aversive reinforcement, escape latencies, and memory levels after place learning in the presence and absence of unexpected aversive events. The results show that two features of learned helplessness depend on the same modulatory system as aversive reinforcement. Moreover, changes in aversive reinforcement and escape latency depend on local neural circuit modulation, while memory enhancement requires larger modulation of multiple behavioral control circuits.
Poikilothermic organisms such as insects have mechanisms to protect neural function under high temperature stress. Natural variation at the foraging (for) locus of the fruit fly, Drosophila melanogaster, encoding a cGMP-dependent protein kinase (PKG), influences neural thermotolerance in Drosophila larvae. The current study re-examines thermotolerance of adult flies to account for inconsistencies in the documented role of for during hyperthermia. We found that adult for (R) (rover) flies with high PKG activity were incapacitated faster under hyperthermic conditions of 39°C compared to their lower PKG activity counterparts for (s) and for (s2) (sitters), but not at higher temperatures. This indicates that lowered PKG activity promotes tolerance to heat stress, and that the for gene influences thermotolerance for a narrow range of temperatures in adult flies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.