Sensory systems continuously adjust their function to match changes in the environment. Such adaptation produces large perceptual effects, and its pervasiveness makes it a key part of understanding cortical function generally. In visual contrast adaptation, for example, brief exposure to vertical stripes can dramatically alter the apparent orientation and intensity of similarly oriented patterns (e.g., [4-7]). However, many environmental changes are long lasting. How does the visual system adjust to such challenges? Most past work on contrast adaptation has adapted subjects for just a few minutes. Only a few studies have examined durations greater than 1 hr, and none have exceeded 1 day. Here, we measured perceptual effects of adaptation in humans who viewed a world lacking vertical information for 4 days continuously. As expected, adaptation increased in magnitude during the first day, but it then showed a drop in strength. The decrease in adaptation is surprising because the adapting environment remained constant, and in short-term work, adaptation always strengthens or at least is maintained under such conditions. It indicates that the classical effects of contrast adaptation, which arise largely in primary visual cortex, are not maintained after approximately 1 day. Results from day 2 through day 4 further showed that slower adaptive processes can overcome this limit. Because adaptation is generally beneficial overall, its limits argue that the brain is sensitive to costs that arise when the neural code changes. These costs may determine when and how cortex can alter its function.
Changes to the visual environment can happen at many timescales, from very transient to semi-permanent. To adapt optimally, the visual system also adjusts at different timescales, with longer-lasting environmental changes producing longer-lasting effects, but how the visual system adapts in this way remains unknown. Here, we show that contrast adaptation-the most-studied form of visual adaptation-has multiple controllers, each operating over a different time scale. In a series of experiments, subjects completed either a contrast matching, contrast detection, or tilt adjustment task, while adapting to contrast at one orientation. Following a relatively longer period (5 min) of adaptation to high contrast, subjects were "deadapted" for a shorter period (e.g., 40 s) to a lower contrast. Deadaptation eliminated perceptual aftereffects of adaptation, but continued testing in a neutral environment revealed their striking recovery. These results suggest the following account: Adaptation was controlled by at least two mechanisms, with initial adaptation affecting a longer-term one and deadaptation affecting a shorter-term one in the opposite direction. Immediately following deadaptation, the effects of the two mechanisms cancelled each other, but the short-term effects rapidly decayed, revealing ongoing longer-term adaptation. A single controlling mechanism cannot account for the observed recovery of effects, since once deadaptation cancels the initial longer-term adaptation, no trace of it remains. Combined with previous results at very long adaptation durations, the present results suggest that contrast adaptation is possibly controlled by a continuum of mechanisms acting over a large range of timescales.
There are many theories on the purpose of neural adaptation, but evidence remains elusive. Here, we discuss the recent work by Benucci et al. (Nat Neurosci 16: 724-729, 2013), who measured for the first time the immediate effects of adaptation on the overall activity of a neuronal population. These measurements confirm two long-standing hypotheses about the purpose of adaptation, namely that adaptation counteracts biases in the statistics of the environment, and that it maintains decorrelation in neuronal stimulus selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.