Brazilian coral reefs form structures significantly different from the well-known reef models, as follows: (i) they have a growth form of mushroomshaped coral pinnacles called "chapeirões", (ii) they are built by a low diversity coral fauna rich in endemic species, most of them relic forms dating back to the Tertiary, and (iii) the nearshore bank reefs are surrounded by siliciclastic sediments. The reefs are distributed in the following four major sectors along the Brazilian coast: the northern, the northeastern and the eastern regions, and the oceanic islands, but certain isolated coral species can be found in warmer waters in embayments of the southern region. There are different types of bank reefs, fringing reefs, isolated "chapeirões" and an atoll present along the Brazilian coast. Corals, milleporids and coralline algae build the rigid frame of the reefs. The areas in which the major coral reefs occur correspond to regions in which nearby urban centers are experiencing accelerated growth, and tourism development is rapidly increasing. The major human effects on the reef ecosystem are mostly associated with the increased sedimentation due to the removal of the Atlantic rainforest and the discharge of industrial and urban effluents. The effects of the warming of oceanic waters that had previously affected several reef areas with high intensity coral bleaching had not shown, by the time of the 2010 event, any episodes of mass coral mortality on Brazilian reefs. AbstrActDescriptors: Coral reefs, Global changes, Coral bleaching, Endemic fauna.Os recifes de coral do Brasil formam estruturas significativamente diferentes dos modelos conhecidos: (i) possuem uma forma de crescimento de pináculos coralíneos em forma de cogumelo, chamados "chapeirões", (ii) são construídos por uma fauna coralínea com baixa diversidade e rica em espécies endêmicas, sendo grande parte destas formas relíquias do período Terciário e (iii) os recifes costeiros estão num ambiente dominado por sedimentos siliciclásticos. Os recifes estão distribuídos em quatro áreas ao longo da costa brasileira: regiões norte, nordeste, leste, e nas ilhas oceânicas, mas espécies isoladas de coral podem ser encontradas em águas mais quentes nas enseadas da região sul. Diferentes tipos de banco recifais, recifes em franja, "chapeirões" isolados e um atol estão presentes ao longo da costa brasileira. Corais, milleporídeos e algas coralinas incrustantes constroem a estrutura rígida dos recifes. As áreas em que ocorrem os maiores recifes de coral correspondem às regiões nas proximidades de centros urbanos que estão experimentando crescimento acelerado e rápido desenvolvimento do turismo. Os principais efeitos antropogênicos sobre o ecossistema recifal estão associados, essencialmente ao aumento da sedimentação devido à remoção da mata atlântica e as descargas de efluentes industriais e urbanos. Os efeitos do aquecimento das águas oceânicas que vem afetando várias áreas de recifes, com alta intensidade de branqueamento de coral, não causaram mortalidade em massa ...
Coral habitat structures increase abundance and richness of organisms by providing niches, easy access to resources and refuge from predators. Corals harbor a great variety of animals; the variation in coral species morphology contributes to the heterogeneity and complexity of habitat types. In this report, we studied the richness and abundance of crustaceans (Decapoda, Copepoda, Peracarida and Ostracoda) associated with three species of Mussismilia exhibiting different growth morphologies, in two different coral reefs of the Bahia state (Caramuanas and Boipeba-Moreré, Brazil). Mussismilia hispida is a massive coral; M. braziliensis also has a massive growth pattern, but forms a crevice in the basal area of the corallum; M. harttii has a meandroid pattern. PERMANOVA analysis suggests significant differences in associated fauna richness among Mussismilia species, with higher values for M. harttii, followed by M. braziliensis and later by M. hispida. The same trend was observed for density, except that the comparison of M. braziliensis and M. hispida did not show differences. Redundancy and canonical correspondence analysis indicated that almost all of the crustacean species were more associated with the M. harttii colonies that formed a group clearly separated from colonies of M. braziliensis and M. hispida. We also found that the internal volume of interpolyp space, only present in M. harttii, was the most important factor influencing richness and abundance of all analyzed orders of crustaceans.
Siderastrea stellata and S. radians are scleractinian coral species that present a remarkable overlap of diagnostic characteristics and sympatric distribution. Moreover, both are viviparous with similar reproductive strategies and with a gregarious larval behavior. Samples of both species from the Brazilian coast were analyzed using 18 isozymic loci to quantify their genetic variability and populational structure. Results confirmed species identity, high intrapopulational variability and revealed moderate genetic structuring among all samples (S. stellata: F (ST) = 0.070; S. radians: F (ST) = 0.092). Based on genotypic diversity analysis, there was evidence that local recruitment may have a minor role in the populations (mean, G ( o ):G ( e )= 1.00 +/- 0.0003 SD for S. stellata and 0.99 +/- 0.0023 SD for S. radians). Deviations towards heterozygote deficiencies found in both Siderastrea species could be explained by the Wahlund effect, since there was evidence that populations might be composed of colonies of different ages. In S. radians it is also likely that there is some inbreeding occurring in the studied populations. Despite the brooding pattern and the gregarious larval behavior, our data suggest the occurrence of gene flow along the Brazilian coast. This is the first study on population genetics of Brazilian reef corals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.