This paper presents a novel, more efficient reduced-order model based on the proper orthogonal decomposition (POD) for the prediction of flows in turbomachinery. To further reduce the computational time, the governing equations were written as a function of specific volume instead of density. This allowed for the pre-computation of the coefficients of the system of ordinary differential equations that describe the reduced-order model. A penalty method was developed to implement time-dependent boundary conditions and achieve a stable solution for the reduced-order model. Rotor 67 was used as a validation case for the reduced-order model, which was tested for both on- and off-reference conditions. This reduced-order model was shown to be more than 10,000 times faster than the full-order model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.