We have established Meloidogyne hapla as a tractable model plant-parasitic nematode amenable to forward and reverse genetics, and we present a complete genome sequence. At 54 Mbp, M. hapla represents not only the smallest nematode genome yet completed, but also the smallest metazoan, and defines a platform to elucidate mechanisms of parasitism by what is the largest uncontrolled group of plant pathogens worldwide. The M. hapla genome encodes significantly fewer genes than does the freeliving nematode Caenorhabditis elegans (most notably through a reduction of odorant receptors and other gene families), yet it has acquired horizontally from other kingdoms numerous genes suspected to be involved in adaptations to parasitism. In some cases, amplification and tandem duplication have occurred with genes suspected of being acquired horizontally and involved in parasitism of plants. Although M. hapla and C. elegans diverged >500 million years ago, many developmental and biochemical pathways, including those for dauer formation and RNAi, are conserved. Although overall genome organization is not conserved, there are areas of microsynteny that may suggest a primary biological function in nematodes for those genes in these areas. This sequence and map represent a wealth of biological information on both the nature of nematode parasitism of plants and its evolution.compaction ͉ dauer ͉ development ͉ horizontal gene transfer ͉ gene N ematodes are an abundant and species-rich animal phylum.They share a common body plan on which various adaptations have evolved, enabling Nematoda to occupy essentially all ecological niches, including being parasites of many other organisms (1). Parasitism of plants appears to have arisen independently in three of the major 12 nematode clades (2) and results in annual losses to world agriculture estimated to exceed $US100 billion (3, 4). The majority of damage is caused by sedentary endoparasitic forms in the order Tylenchida, which includes the root-knot nematodes (Meloidogyne spp., RKN). RKN have a cosmopolitan distribution and a host range that spans most crops, although individual RKN species exhibit a more restricted host range. Mature female RKN release hundreds of eggs onto the surface of the root that hatch in the soil as second-stage larvae (L2) and typically reinfect the same plant. RKN L2 are similar in function to dauer larvae (5), which were first described as an adaptation to parasitism to overcome adverse environmental conditions and facilitate dispersal (6), but have been best studied in the free-living nematode Caenorhabditis elegans (7). These larvae are developmentally arrested, motile, nonfeeding, nonaging, and long-lived. Like C. elegans dauers, RKN L2 are detergent-resistant (5), use the glyoxylate pathway (8), and exhibit intestinal morphology with sparse luminal microvilli and numerous lipid storage vesicles that permit long-term survival in the soil. RKN L2 penetrate the root and migrate intercellularly into the vascular cylinder. Migration is accompanied by extensive ...
The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi) with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis) and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae) while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward understanding the phylogenetic relationships within the group.
Root-knot nematode (RKN; Meloidogyne spp.) is a major crop pathogen worldwide. Effective resistance exists for a few plant species, including that conditioned by Mi in tomato (Solanum lycopersicum). We interrogated the root transcriptome of the resistant (Mi1) and susceptible (Mi-) cultivars 'Motelle' and 'Moneymaker,' respectively, during a time-course infection by the Mi-susceptible RKN species Meloidogyne incognita and the Mi-resistant species Meloidogyne hapla. In the absence of RKN infection, only a single significantly regulated gene, encoding a glycosyltransferase, was detected. However, RKN infection influenced the expression of broad suites of genes; more than half of the probes on the array identified differential gene regulation between infected and uninfected root tissue at some stage of RKN infection. We discovered 217 genes regulated during the time of RKN infection corresponding to establishment of feeding sites, and 58 genes that exhibited differential regulation in resistant roots compared to uninfected roots, including the glycosyltransferase. Using virus-induced gene silencing to silence the expression of this gene restored susceptibility to M. incognita in 'Motelle,' indicating that this gene is necessary for resistance to RKN. Collectively, our data provide a picture of global gene expression changes in roots during compatible and incompatible associations with RKN, and point to candidates for further investigation.
Enterococcus cecorum (EC) is the dominant enteric commensal of adult chickens and contributes to the gut consortia of many avian and mammalian species. While EC infection is an uncommon zoonosis, like other enterococcal species it can cause life-threating nosocomial infection in people. In contrast to other enterococci which are considered opportunistic pathogens, emerging pathogenic strains of EC cause outbreaks of musculoskeletal disease in broiler chickens. Typical morbidity and mortality is comparable to other important infectious diseases of poultry. In molecular epidemiologic studies, pathogenic EC strains were found to be genetically clonal. These findings suggested acquisition of specific virulence determinants by pathogenic EC. To identify divergent genomic features and acquired virulence determinants in pathogenic EC; comparative genomic analysis was performed on genomes of 3 pathogenic and 3 commensal strains of EC. Pathogenic isolates had smaller genomes with a higher GC content, and they demonstrated large regions of synteny compared to commensal isolates. A molecular phylogenetic analysis demonstrated sequence divergence in pathogenic EC genomes. At a threshold of 98% identity, 414 predicted proteins were identified that were highly conserved in pathogenic EC but not in commensal EC. Among these, divergent CRISPR-cas defense loci were observed. In commensal EC, the type IIA arrangement typical for enterococci was present; however, pathogenic EC had a type IC locus, which is novel in enterococci but commonly observed in streptococci. Potential mediators of virulence identified in this analysis included a polysaccharide capsular locus similar to that recently described for E. faecium, an epa-like locus, and cell wall associated proteins which may bind host extracellular matrix. This analysis identified specific genomic regions, coding sequences, and predicted proteins which may be related to the divergent evolution and increased virulence of emerging pathogenic strains of EC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.