Pyoverdine is the primary siderophore of the gram-negative bacterium Pseudomonas aeruginosa. The pyoverdine region was recently identified as the most divergent locus alignable between strains in the P. aeruginosa genome. Here we report the nucleotide sequence and analysis of more than 50 kb in the pyoverdine region from nine strains of P. aeruginosa. There are three divergent sequence types in the pyoverdine region, which correspond to the three structural types of pyoverdine. The pyoverdine outer membrane receptor fpvA may be driving diversity at the locus: it is the most divergent alignable gene in the region, is the only gene that showed substantial intratype variation that did not appear to be generated by recombination, and shows evidence of positive selection. The hypothetical membrane protein PA2403 also shows evidence of positive selection; residues on one side of the membrane after protein folding are under positive selection. R, previously identified as a type IV strain, is clearly derived from a type III strain via a 3.4-kb deletion which removes one amino acid from the pyoverdine side chain peptide. This deletion represents a natural modification of the product of a nonribosomal peptide synthetase enzyme, whose consequences are predictive from the DNA sequence. There is also linkage disequilibrium between the pyoverdine region and pvdY, a pyoverdine gene separated by 30 kb from the pyoverdine region. The pyoverdine region shows evidence of horizontal transfer; we propose that some alleles in the region were introduced from other soil bacteria and have been subsequently maintained by diversifying selection.
Whole-genome shotgun sequencing was used to study the sequence variation of three Pseudomonas aeruginosa isolates, two from clonal infections of cystic fibrosis patients and one from an aquatic environment, relative to the genomic sequence of reference strain PAO1. The majority of the PAO1 genome is represented in these strains; however, at least three prominent islands of PAO1-specific sequence are apparent. Conversely, ϳ10% of the sequencing reads derived from each isolate fail to align with the PAO1 backbone. While average sequence variation among all strains is roughly 0.5%, regions of pronounced differences were evident in whole-genome scans of nucleotide diversity. We analyzed two such divergent loci, the pyoverdine and O-antigen biosynthesis regions, by complete resequencing. A thorough analysis of isolates collected over time from one of the cystic fibrosis patients revealed independent mutations resulting in the loss of O-antigen synthesis alternating with a mucoid phenotype. Overall, we conclude that most of the PAO1 genome represents a core P. aeruginosa backbone sequence while the strains addressed in this study possess additional genetic material that accounts for at least 10% of their genomes. Approximately half of these additional sequences are novel.
The outer carbohydrate layer, or O antigen, of Pseudomonas aeruginosa varies markedly in different isolates of these bacteria, and at least 20 distinct O-antigen serotypes have been described. Previous studies have indicated that the major enzymes responsible for O-antigen synthesis are encoded in a cluster of genes that occupy a common genetic locus. We used targeted yeast recombinational cloning to isolate this locus from the 20 internationally recognized serotype strains. DNA sequencing of these isolated segments revealed that at least 11 highly divergent gene clusters occupy this region. Homology searches of the encoded protein products indicated that these gene clusters are likely to direct O-antigen biosynthesis. The O15 serotype strains lack functional gene clusters in the region analyzed, suggesting that O-antigen biosynthesis genes for this serotype are harbored in a different portion of the genome. The overall pattern underscores the plasticity of the P. aeruginosa genome, in which a specific site in a well-conserved genomic region can be occupied by any of numerous islands of functionally related DNA with diverse sequences.Microbes occupy virtually every habitable niche in the biosphere, highlighting the underlying capacity for genetic adaptability in these organisms. Pseudomonas aeruginosa in particular is notable for its ability to thrive in diverse habitats (44). Consistent with a genetic basis for this environmental adaptability, characterization of intraspecies differences between strains of this organism has revealed extensive variation both in the gross overall structural organization of the genome (41) and in sequence variation of specific genes (20; M. V. Olson, A. Kas, and D. H. Spencer, unpublished data). Of particular interest is the observation that a rather large island (ϳ50 kbp) of genomic sequence, containing dozens of potential genes, is substituted in different P. aeruginosa isolates (25). This suggests that modular blocks of genes that are swapped between different strains is one mechanism that mediates diversity among these different bacterial lineages.The description of the full genomic sequence of P. aeruginosa strain PAO1 (46) provides a reference sequence map with which to initiate studies of genetic diversity at the whole-genome level. We employed whole-genome shotgun sequence analysis of three different P. aeruginosa strains as a means to detect both local and more global differences among strains isolated from different sources (Olson et al., unpublished). This study revealed a region with prominent differences between strains that proved to encode the O-antigen biosynthesis genes involved in the creation and assembly of the bacterial outer carbohydrate lipopolysaccharide coat (reviewed in reference 39). In various P. aeruginosa strains, the outer carbohydrate polymer, referred to as the B band, is composed of chemically diverse chains of repeating polysaccharides. The studies to date have indicated that a major set of enzymes responsible for O-antigen synthesis and assembly...
In addition to causing diarrhea, Escherichia coli O157:H7 infection can lead to hemolytic-uremic syndrome (HUS), a severe disease characterized by hemolysis and renal failure. Differences in HUS frequency among E. coli O157:H7 outbreaks have been noted, but our understanding of bacterial factors that promote HUS is incomplete. In 2006, in an outbreak of E. coli O157:H7 caused by consumption of contaminated spinach, there was a notably high frequency of HUS. We sequenced the genome of the strain responsible (TW14359) with the goal of identifying candidate genetic factors that contribute to an enhanced ability to cause HUS. The TW14359 genome contains 70 kb of DNA segments not present in either of the two reference O157:H7 genomes. We identified seven putative virulence determinants, including two putative type III secretion system effector proteins, candidate genes that could result in increased pathogenicity or, alternatively, adaptation to plants, and an intact anaerobic nitric oxide reductase gene, norV. We surveyed 100 O157:H7 isolates for the presence of these putative virulence determinants. A norV deletion was found in over one-half of the strains surveyed and correlated strikingly with the absence of stx 1 . The other putative virulence factors were found in 8 to 35% of the O157:H7 isolates surveyed, and their presence also correlated with the presence of norV and the absence of stx 1 , indicating that the presence of norV may serve as a marker of a greater propensity for HUS, similar to the correlation between the absence of stx 1 and a propensity for HUS.
Classifying individual bacterial species comprising complex, polymicrobial patient specimens remains a challenge for culture-based and molecular microbiology techniques in common clinical use. We therefore adapted practices from metagenomics research to rapidly catalog the bacterial composition of clinical specimens directly from patients, without need for prior culture. We have combined a semiconductor deep sequencing protocol that produces reads spanning 16S ribosomal RNA gene variable regions 1 and 2 (∼360 bp) with a de-noising pipeline that significantly improves the fraction of error-free sequences. The resulting sequences can be used to perform accurate genus- or species-level taxonomic assignment. We explore the microbial composition of challenging, heterogeneous clinical specimens by deep sequencing, culture-based strain typing, and Sanger sequencing of bulk PCR product. We report that deep sequencing can catalog bacterial species in mixed specimens from which usable data cannot be obtained by conventional clinical methods. Deep sequencing a collection of sputum samples from cystic fibrosis (CF) patients reveals well-described CF pathogens in specimens where they were not detected by standard clinical culture methods, especially for low-prevalence or fastidious bacteria. We also found that sputa submitted for CF diagnostic workup can be divided into a limited number of groups based on the phylogenetic composition of the airway microbiota, suggesting that metagenomic profiling may prove useful as a clinical diagnostic strategy in the future. The described method is sufficiently rapid (theoretically compatible with same-day turnaround times) and inexpensive for routine clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.