Dopamine (DA) receptors in the medial prefrontal cortex (mPFC) exert powerful effects on cognition by modulating the balance between excitatory and inhibitory neurotransmission. The present study examined the impact of chronic intermittent ethanol (CIE) exposure on cognitive function and DA receptor-mediated neurotransmission in the rat mPFC. Consistent with alterations in executive function in alcoholics, CIE-exposed rats exhibited deficits in behavioral flexibility in an operant set-shifting task. Since alterations in dopaminergic neurotransmission in the mPFC have been implicated in a number of behavioral disorders including addiction, studies were then performed in the adult acute slice preparation to examine changes in DA receptor function in the mPFC following CIE exposure. In slices obtained from control rats, DA receptor stimulation was observed to exert complex actions on neuronal firing and synaptic neurotransmission that were not only dependent upon the particular receptor subtype but also whether it was a pyramidal cell or a fast-spiking interneuron. In contrast to slices from control rats, there was a near complete loss of the modulatory actions of D2/D4 receptors on cell firing and neurotransmission in slices obtained immediately, 1 and 4 weeks after the last day of CIE exposure. This loss did not appear to be associated with changes in receptor expression. In contrast, CIE exposure did not alter D1 receptor function or mGluR1 modulation of firing. These studies are consistent with the suggestion that chronic alcohol exposure disrupts cognitive function at least in part through disruption of D2 and D4 receptor signaling in mPFC.
Delayed maturation of the adolescent prefrontal cortex (PFC) may render it particularly vulnerable to insults, including those associated with drugs of abuse. Using a rat model of binge alcohol exposure, the present study examined the effect of adolescent intermittent ethanol (AIE) exposure during post-natal days (PD) 28-42 on GABAergic neurotransmission in the prelimbic cortex (PrL-C). In control rats, patch-clamp electrophysiology in acute slices obtained at different postnatal ages revealed a developmental increase in the GABAA receptor-mediated tonic current in layer V pyramidal neurons but no change in layers II/III when measured in the adult. In slices from AIE exposed rats, the amplitude of the tonic current was significantly reduced compared to controls when tested at PD 45, 60 and 90-120. This AIE-induced reduction in tonic current was found to reflect attenuation of currents mediated by δ-subunit containing receptors. Consistent with this, facilitation of the tonic current by bath application of either ethanol or allopregnanolone was attenuated in slices from AIE exposed adult rats compared to control rats. However, expression of this facilitation as a percent of the amplitude of the total current mediated by δ-GABAA receptors revealed that AIE did not alter their sensitivity to either agonist. Lastly, immunohistochemistry and Western blot analysis revealed no change in the expression of δ-GABAA subunits or their surface expression. Taken together, these studies reveal that AIE exposure results in persistent deficits in δ-GABAA tonic currents in the adult PrL-C that may contribute to deficits in decision-making and behavioral control in adulthood.
Introduction Alcohol dependence is characterized by a reduction in reward threshold, development of a negative affective state, and significant cognitive impairments. Dependence-induced glutamatergic neuroadaptations in the neurocircuitry mediating reward, affect and cognitive function are thought to underlie the neural mechanism for these alterations. These changes serve to promote increased craving for alcohol and facilitate the development of maladaptive behaviors that promote relapse to alcohol drinking during periods of abstinence. Objective To review the extant literature on the effects of chronic alcohol exposure on glutamatergic neurotransmission and its impact on reward, affect and cognition. Results Evidence from a diverse set of studies demonstrates significant enhancement of glutamatergic activity following chronic alcohol exposure and up-regulation of GluN2B-containing NMDA receptor expression and function is a commonly observed phenomenon that likely reflects activity-dependent adaptive homeostatic plasticity. However, changes in NMDA receptors and additional glutamatergic neuroadaptations are often circuit and cell-type specific. Discussion Dependence-induced alterations in glutamate signaling contribute to many of the symptoms experienced in addicted individuals and can persist well into abstinence. This suggests they play an important role in the development of behaviors that increase the probability for relapse. As our understanding of the complexity of the neurocircuitry involved in the addictive process has advanced, it has become increasingly clear that investigations of cell-type and circuit-specific effects are required to gain a more comprehensive understanding of the glutamatergic adaptations and their functional consequences in alcohol addiction. Conclusion While pharmacological treatments for alcohol dependence and relapse targeting the glutamatergic system have shown great promise in preclinical models, more research is needed to uncover novel, possibly circuit-specific, targets with improved efficacy and reduced side effects.
Numerous biochemical as well as electrophysiological techniques require tissue that must be retrieved very quickly following death in order to preserve the physiological integrity of the neuronal environment. Therefore, the ability to accurately predict the precise locations of brain regions of interest (ROI) and to retrieve those areas as quickly as possible following the brain harvest is critical for subsequent analyses. One way to achieve this objective is the utilization of high resolution MRI scans to guide the subsequent dissections. In the present study, individual MRI scans of the brains of rhesus and cynomolgus macaques that had chronically self-administered ethanol were employed in order to determine which blocks of dissected tissue contained specific ROIs. MRI-guided brain dissection of discrete brain regions was completely accurate in 100% of the cases. In comparison, approximately 60–70% accuracy was achieved in dissections that relied on external landmarks alone without the aid of MRI. These results clearly demonstrate that the accuracy of targeting specific brain areas can be improved with high-resolution MR imaging.
Evidence for an interaction between alcohol consumption and the serotonin system has been observed repeatedly in both humans and animal models yet the specific relationship between the two remains unclear. Research has focused primarily on the serotonin transporter (SERT) due in part to its role in regulating extracellular levels of serotonin. The hippocampal formation is heavily innervated by ascending serotonin fibers and is a major component of the neurocircuitry involved in mediating the reinforcing effects of alcohol. The current study investigated the effects of chronic ethanol self-administration on hippocampal SERT in a layer and field specific manner using a monkey model of human alcohol consumption. [3H]Citalopram was used to measure hippocampal SERT density in male cynomolgus macaques that voluntarily self-administered ethanol for 18 months. Hippocampal [3H]citalopram binding was less dense in ethanol drinkers than in controls, with the greatest effect observed in the molecular layer of the dentate gyrus. SERT density was not correlated with measures of ethanol consumption or blood ethanol concentrations, suggesting the possibility that a threshold level of consumption had been met. The lower hippocampal SERT density observed suggests that chronic ethanol consumption is associated with altered serotonergic modulation of hippocampal neurotransmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.