To inform governmental discussions on the nature of a revised Strategic Plan for Biodiversity of the Convention on Biological Diversity (CBD), we reviewed the relevant literature and assessed the framing of the 20 Aichi Biodiversity Targets in the current strategic plan. We asked international experts from nongovernmental organizations, academia, government agencies, international organizations, research institutes, and the CBD to score the Aichi Targets and their constituent elements against a set of specific, measurable, ambitious, realistic, unambiguous, scalable, and comprehensive criteria (SMART based, excluding time bound because all targets are bound to 2015 or 2020). We then investigated the relationship between these expert scores and reported progress toward the target elements by using the findings from 2 global progress assessments (Global Biodiversity Outlook and the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services). We analyzed the data with ordinal logistic regressions. We found significant positive relationships (p < 0.05) between progress and the extent to which the target elements were perceived to be measurable, realistic, unambiguous, and scalable. There was some evidence of a relationship between progress and specificity of the target elements, but no relationship between progress and ambition. We are the first to show associations between progress and the extent to which the Aichi Targets meet certain SMART criteria. As negotiations around the post‐2020 biodiversity framework proceed, decision makers should strive to ensure that new or revised targets are effectively structured and clearly worded to allow the translation of targets into actionable policies that can be successfully implemented nationally, regionally, and globally.
Article impact statement: Questions regarding freshwater ecosystem conservation, role of social structure in human-environment interactions, and impacts of conservation need more attention. This article is protected by copyright. All rights reserved.[3] AbstractIn 2008, a group of conservation scientists compiled a list of 100 priority questions for the conservation of the world's biodiversity [Sutherland et al. (2009) Conservation Biology, 23, 557-567]. However, now almost a decade later, no one has yet published a study gauging how much progress has been made in addressing these 100 high-priority questions in the peer-reviewed literature. Here we take a first step toward re-examining the 100 questions and identify key knowledge gaps that still remain. Through a combination of a questionnaire and a literature review, we evaluated each of the 100 questions on the basis of two criteria: relevance and effort. We defined highly-relevant questions as those which -if answered -would have the greatest impact on global biodiversity conservation, while effort was quantified based on the number of review publications addressing a particular question, which we used as a proxy for research effort. Using this approach we identified a set of questions that, despite being perceived as highly relevant, have been the focus of relatively few review publications over the past ten years. These questions covered a broad range of topics but predominantly tackled three major themes: the conservation and management of freshwater ecosystems, the role of societal structures in shaping interactions between people and the environment, and the impacts of conservation interventions. We see these questions as important knowledge gaps that have so far received insufficient attention and may need to be prioritised in future research. This article is protected by copyright. All rights reserved.[4]
Global forest assessments use forest area as an indicator of biodiversity status, which may mask below-canopy pressures driving forest biodiversity loss and ‘empty forest’ syndrome. The status of forest biodiversity is important not only for species conservation but also because species loss can have consequences for forest health and carbon storage. We aimed to develop a global indicator of forest specialist vertebrate populations to improve assessments of forest biodiversity status. Using the Living Planet Index methodology, we developed a weighted composite Forest Specialist Index for the period 1970–2014. We then investigated potential correlates of forest vertebrate population change. We analysed the relationship between the average rate of change of forest vertebrate populations and satellite-derived tree cover trends, as well as other pressures. On average, forest vertebrate populations declined by 53% between 1970 and 2014. We found little evidence of a consistent global effect of tree cover change on forest vertebrate populations, but a significant negative effect of exploitation threat on forest specialists. In conclusion, we found that the forest area is a poor indicator of forest biodiversity status. For forest biodiversity to recover, conservation management needs to be informed by monitoring all threats to vertebrates, including those below the canopy.
Global forest assessments use forest area as a proxy indicator of biodiversity status, which may mask below-canopy pressures driving forest biodiversity loss and ‘empty forest’ syndrome. The status of forest biodiversity is important not only for species conservation but also because species loss can have consequences for forest health and carbon storage. We aimed to develop a global indicator of forest specialist vertebrate populations to improve assessments of forest biodiversity status. For this purpose we used the Living Planet Index methodology, developing a weighted composite Forest Specialist Index for the period 1970-2014. We then investigated potential drivers of forest vertebrate population change, including tree cover change, to determine whether forest area is a good proxy for forest biodiversity. The effects of satellite-derived tree cover trends and other pressures on the average rate of change of forest vertebrate populations were analysed. We reviewed the literature to gain more context-specific information relating to drivers of forest specialist population change. On average, forest vertebrate populations declined by 53% between 1970 and 2014. We found little evidence of a consistent global effect of tree cover change on forest vertebrate populations but a significant negative effect of exploitation threat on forest specialists. However, time-series cross-correlation analyses showed some forest specialist populations are closely aligned to tree cover change. The literature review identified several drivers of population change that cannot be detected remotely and may cause populations to change independently of tree cover. Forest vertebrate populations have more than halved since the 1970s. In conclusion, we found that forest area is a poor proxy of forest biodiversity status. For forest biodiversity to recover, we must monitor and manage all threats to vertebrates, including those below the canopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.