Case-parent trios were used in a genome wide association study of cleft lip with/without cleft palate (CL/P). SNPs near two genes not previously associated with CL/P [MAFB: most significant SNP rs13041247, with odds ratio per minor allele OR=0.704; 95%CI=0.635,0.778; p=2.05*10 −11 ; and ABCA4: most significant SNP rs560426, with OR=1.432; 95%CI=1.292,1.587; p=5.70*10 −12 ] and two previously identified regions (chr. 8q24 and IRF6) attained genome wide significance. Stratifying trios into European and Asian ancestry groups revealed differences in statistical significance, although estimated effect sizes were similar. Replication studies from several populations showed confirming evidence, with families of European ancestry giving stronger evidence for markers in 8q24 while Asian families showed stronger evidence for MAFB and ABCA4. Expression studies support a role for MAFB in palate development.Corresponding author: THB (tbeaty@jhsph.edu). NIH Public Access Author ManuscriptNat Genet. Author manuscript; available in PMC 2010 September 17. Published in final edited form as:Nat Genet. 2010 June ; 42(6): 525-529. doi:10.1038/ng.580. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptCleft lip with or without cleft palate (CL/P) is a common human birth defect with documented genetic and environmental risk factors 1 . While CL/P can occur in many Mendelian malformation syndromes, the isolated, non-syndromic form constitutes 70% of all cases2. Evidence for genetic control of CL/P is compelling: recurrence risks are 20-30 times greater than population prevalences3 , 4 and both twin and family studies 5 suggest a major role for genes, Mutations in IRF6 cause VanderWoude syndrome, the most common Mendelian syndrome including CL/P, and markers in IRF6 have repeatedly shown evidence of association with isolated, non-syndromic CL/P 6-9 . An allele disrupting an AP2 binding site near IRF6 showed particularly strong evidence among European CL families, although multiple risk alleles are likely 10 .Birnbaum et al. 11 conducted a case-control genome wide association study (GWAS) in Germany and found significant evidence of association with markers in 8q24.21, and a US case-control GWAS confirmed this region 12 , with rs987525 being the most significant marker in both studies. Here we present a GWAS using a case-parent trio design in a consortium drawing cases from Europe, the US, China, Taiwan, Singapore, Korea and the Philippines. This design has the advantage of being robust to confounding due to population stratification, which is important when cases from diverse populations are combined. ResultsBecause these case-parent trios came from different populations (Table 1), we conducted a principal components analysis (PCA) on all parents to document genetic variation in our consortium (Supplementary Figure 1). Approximately 50% of parents could be classified as Asian and 45% as European, with remaining parents being of African or "other" ancestry (including mixed). Transmission disequilibrium tests...
Orofacial clefts are common birth defects and can occur as isolated, nonsyndromic events or as part of Mendelian syndromes. There is substantial phenotypic diversity in individuals with these birth defects and their family members: from subclinical phenotypes to associated syndromic features that is mirrored by the many genes that contribute to the etiology of these disorders. Identification of these genes and loci has been the result of decades of research using multiple genetic approaches. Significant progress has been made recently due to advances in sequencing and genotyping technologies, primarily through the use of whole exome sequencing and genome-wide association studies. Future progress will hinge on identifying functional variants, investigation of pathway and other interactions, and inclusion of phenotypic and ethnic diversity in studies.
Genome-wide association scans of complex multipartite traits like the human face typically use preselected phenotypic measures. Here we report a data-driven approach to phenotyping facial shape at multiple levels of organization, allowing for an open-ended description of facial variation, while preserving statistical power. In a sample of 2,329 persons of European ancestry we identified 38 loci, 15 of which replicated in an independent European sample (n=1,719). Four loci were completely novel. For the others, additional support (n=9) or pleiotropic effects (n=2) were found in the literature, but the results reported here were further refined. All 15 replicated loci revealed distinctive patterns of global-to-local genetic effects on facial shape and showed enrichment for active chromatin elements in human cranial neural crest cells, suggesting an early developmental origin of the facial variation captured. These results have implications for studies of facial genetics and other complex morphological traits.
Orofacial clefts (OFCs), which include non-syndromic cleft lip with or without cleft palate (CL/P), are among the most common birth defects in humans, affecting approximately 1 in 700 newborns. CL/P is phenotypically heterogeneous and has a complex etiology caused by genetic and environmental factors. Previous genome-wide association studies (GWASs) have identified at least 15 risk loci for CL/P. As these loci do not account for all of the genetic variance of CL/P, we hypothesized the existence of additional risk loci. We conducted a multiethnic GWAS in 6480 participants (823 unrelated cases, 1700 unrelated controls and 1319 case-parent trios) with European, Asian, African and Central and South American ancestry. Our GWAS revealed novel associations on 2p24 near FAM49A, a gene of unknown function (P = 4.22 × 10), and 19q13 near RHPN2, a gene involved in organizing the actin cytoskeleton (P = 4.17 × 10). Other regions reaching genome-wide significance were 1p36 (PAX7), 1p22 (ARHGAP29), 1q32 (IRF6), 8q24 and 17p13 (NTN1), all reported in previous GWASs. Stratification by ancestry group revealed a novel association with a region on 17q23 (P = 2.92 × 10) among individuals with European ancestry. This region included several promising candidates including TANC2, an oncogene required for development, and DCAF7, a scaffolding protein required for craniofacial development. In the Central and South American ancestry group, significant associations with loci previously identified in Asian or European ancestry groups reflected their admixed ancestry. In summary, we have identified novel CL/P risk loci and suggest new genes involved in craniofacial development, confirming the highly heterogeneous etiology of OFCs.
Mutations in interferon regulatory factor 6 (IRF6) account for ∼70% of cases of Van der Woude syndrome (VWS), the most common syndromic form of cleft lip and palate. In 8 of 45 VWS-affected families lacking a mutation in IRF6, we found coding mutations in grainyhead-like 3 (GRHL3). According to a zebrafish-based assay, the disease-associated GRHL3 mutations abrogated periderm development and were consistent with a dominant-negative effect, in contrast to haploinsufficiency seen in most VWS cases caused by IRF6 mutations. In mouse, all embryos lacking Grhl3 exhibited abnormal oral periderm and 17% developed a cleft palate. Analysis of the oral phenotype of double heterozygote (Irf6(+/-);Grhl3(+/-)) murine embryos failed to detect epistasis between the two genes, suggesting that they function in separate but convergent pathways during palatogenesis. Taken together, our data demonstrated that mutations in two genes, IRF6 and GRHL3, can lead to nearly identical phenotypes of orofacial cleft. They supported the hypotheses that both genes are essential for the presence of a functional oral periderm and that failure of this process contributes to VWS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.