Each spring roughly 200 students, mostly nonmajors, enroll in the Introduction to Meteorology course at Iowa State University and are required to make at least 25 forecasts throughout the semester. The Dynamic Weather Forecaster (DWF) forecasting platform requires students to forecast more than just simple ''numeric'' forecasts and includes questions on advection, cloudiness, and precipitation factors that are not included in forecast contests often used in meteorology courses. The present study examines the evolution of forecasting skill for students enrolled in the class in spring 2010 and 2011 and compares student performance with that of an ''expert forecaster. '' The expert forecasters were chosen from meteorology students in an advanced forecasting course who showed exemplary forecasting skill throughout the previous semester. It is shown that these introductory students improve in forecast skill over only the first 10-15 days that they forecast, a number smaller than the 25 days found in an earlier study examining meteorology majors in an upper-level course. The skill of both groups plateaus after that time. An analysis of two types of questions in the DWF reveals that students do have skill slightly better than that of a persistence forecast when predicting parameters traditionally used in forecasting contests, but fail to outperform persistence when predicting more complex atmospheric processes like temperature advection and factors influencing precipitation such as moisture content and instability. The introduction of a contest ''with prizes'' halfway through the semester in 2011 was found to have at best mixed impacts on forecast skill. ABSTRACT Each spring roughly 200 students, mostly nonmajors, enroll in the Introduction to Meteorology course at Iowa State University and are required to make at least 25 forecasts throughout the semester. The Dynamic Weather Forecaster (DWF) forecasting platform requires students to forecast more than just simple ''numeric'' forecasts and includes questions on advection, cloudiness, and precipitation factors that are not included in forecast contests often used in meteorology courses. The present study examines the evolution of forecasting skill for students enrolled in the class in spring 2010 and 2011 and compares student performance with that of an ''expert forecaster.'' The expert forecasters were chosen from meteorology students in an advanced forecasting course who showed exemplary forecasting skill throughout the previous semester. It is shown that these introductory students improve in forecast skill over only the first 10-15 days that they forecast, a number smaller than the 25 days found in an earlier study examining meteorology majors in an upper-level course. The skill of both groups plateaus after that time. An analysis of two types of questions in the DWF reveals that students do have skill slightly better than that of a persistence forecast when predicting parameters traditionally used in forecasting contests, but fail to outperform persistence...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.