A molecular phylogeny and a review of family-group classification are presented for 137 species (ca. 125 genera) of the insect family Cicadidae, the true cicadas, plus two species of hairy cicadas (Tettigarctidae) and two outgroup species from Cercopidae. Five genes, two of them mitochondrial, comprise the 4992 base-pair molecular dataset. Maximum-likelihood and Bayesian phylogenetic results are shown, including analyses to address potential base composition bias. Tettigarcta is confirmed as the sister-clade of the Cicadidae and support is found for three subfamilies identified in an earlier morphological cladistic analysis. A set of paraphyletic deep-level clades formed by African genera are together named as Tettigomyiinae n. stat. Taxonomic reassignments of genera and tribes are made where morphological examination confirms incorrect placements suggested by the molecular tree, and 11 new tribes are defined (Arenopsaltriini n. tribe, Durangonini n. tribe, Katoini n. tribe, Lacetasini n. tribe, Macrotristriini n. tribe, Malagasiini n. tribe, Nelcyndanini n. tribe, Pagiphorini n. tribe, Pictilini n. tribe, Psaltodini n. tribe, and Selymbriini n. tribe). Tribe Tacuini n. syn. is synonymized with Cryptotympanini, and Tryellina n. syn. is synonymized with an expanded Tribe Lamotialnini. Tribe Hyantiini n. syn. is synonymized with Fidicinini. Tribe Sinosenini is transferred to Cicadinae from Cicadettinae, Cicadatrini is moved to Cicadettinae from Cicadinae, and Ydiellini and Tettigomyiini are transferred to Tettigomyiinae n. stat from Cicadettinae. While the subfamily Cicadinae, historically defined by the presence of timbal covers, is weakly supported in the molecular tree, high taxonomic rank is not supported for several earlier clades based on unique morphology associated with sound production.
Maintaining quiescent cells in G0 phase is achieved in part through the multiprotein subunit complex known as DREAM, and in human cell lines the transcription factor E2F4 directs this complex to its cell cycle targets. We found that E2F4 binds a highly overlapping set of human genes among three diverse primary tissues and an asynchronous cell line, which suggests that tissue-specific binding partners and chromatin structure have minimal influence on E2F4 targeting. To investigate the conservation of these transcription factor binding events, we identified the mouse genes bound by E2f4 in seven primary mouse tissues and a cell line. E2f4 bound a set of mouse genes that was common among mouse tissues, but largely distinct from the genes bound in human. The evolutionarily conserved set of E2F4 bound genes is highly enriched for functionally relevant regulatory interactions important for maintaining cellular quiescence. In contrast, we found minimal mRNA expression perturbations in this core set of E2f4 bound genes in the liver, kidney, and testes of E2f4 null mice. Thus, the regulatory mechanisms maintaining quiescence are robust even to complete loss of conserved transcription factor binding events.
Recent acoustic studies have revealed that Cicadetta montana (Scopoli, 1772), which was once thought to be a single widespread Palaearctic cicada species, is actually a complex of many taxa. Although some song patterns are very distinct, others comprise groups of closely related species, as in the case of Cicadetta cerdaniensis Puissant & Boulard, 2000, Cicadetta cantilatrix Sueur & Puissant, 2007, and Cicadetta anapaistica Hertach, 2011. Seven spatially or behaviourally isolated metapopulations belonging to this song group from Italy and Switzerland were detected and investigated using acoustic, molecular, and morphological methods. Taxonomic decisions in this group are challenging because of a lack of truly diagnostic morphological characters, variously coloured morphs, qualitatively intermediate song patterns in contact zones, and strong temperature dependence of song‐duration characters. Molecular genetic studies suggest rapid speciation resulting in incomplete lineage sorting and introgression. It is only by using multiple sources of data that species can be delimited. The new species Cicadetta sibillae sp. nov. and the new subspecies Cicadetta anapaistica lucana ssp. nov. were described using the microstructure of the male calling songs. Cicadetta sibillae sp. nov. occurs from southern Switzerland to central Italy, and is the most abundant cicada in the Northern Apennine. Cicadetta anapaistica lucana ssp. nov. is endemic to a small southern Italian distribution range, and seems to be threatened by habitat loss and fragmentation. There is strong evidence that current distribution patterns and phylogenetic relationships of the Cicadetta cerdaniensis group are linked to speciation events in Pleistocene glacial refugia in the Italian, Iberian, and Balkan peninsulas. © 2015 The Linnean Society of London
Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ‘relict’ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.