Absolute metabolite concentrations are critical to a quantitative understanding of cellular metabolism, as concentrations impact both the free energies and rates of metabolic reactions. Here we use liquid chromatography-tandem mass spectrometry to quantify more than 100 metabolite concentrations in aerobic, exponentially growing E. coli with glucose, glycerol, or acetate as the carbon source. The total observed intracellular metabolite pool is approximately 300 mM. A small number of metabolites dominate the metabolome on a molar basis, with glutamate most abundant. Metabolite concentration exceeds Km for most substrate-enzyme pairs. An exception is lower glycolysis, where concentrations of intermediates are near the Km of their consuming enzymes and all reactions are near equilibrium. This may facilitate efficient flux reversibility given thermodynamic and osmotic constraints. The data and analyses presented here highlight the ability to identify organizing metabolic principles from systems-level absolute metabolite concentration data.
This protocol provides a method for quantitating the intracellular concentrations of endogenous metabolites in cultured cells. The cells are grown in stable isotope-labeled media to near-complete isotopic enrichment and then extracted in organic solvent containing unlabeled internal standards in known concentrations. The ratio of endogenous metabolite to internal standard in the extract is determined using mass spectrometry (MS). The product of this ratio and the unlabeled standard amount equals the amount of endogenous metabolite present in the cells. The cellular concentration of the metabolite can then be calculated on the basis of intracellular volume of the extracted cells. The protocol is exemplified using Escherichia coli and primary human fibroblasts fed uniformly with 13 C-labeled carbon sources, with detection of 13 C-assimilation by liquid chromatographytandem MS. It enables absolute quantitation of several dozen metabolites over ~1 week of work.
Cellular metabolome analysis by chromatography-mass spectrometry (MS) requires prior metabolite extraction. We examined a diversity of solvent systems for extraction of water-soluble metabolites from Escherichia coli. Quantitative yields of approximately 100 different metabolites were measured by liquid chromatography-tandem MS and displayed in clustered heat map format. Many metabolites, including most amino acids and components of central carbon metabolism, were adequately extracted by a broad spectrum of solvent mixtures. For nucleotide triphosphates, however, mixtures of acidic (0.1 M formic acid-containing) acetonitrile/water (80:20) or acetonitrile/methanol/water (40:40:20) gave superior triphosphate yields. Experiments involving isotopic tracers revealed that the improved triphosphate yields in the acidic acetonitrile were in part due to reduced triphosphate decomposition, which is a major problem when extracting with other solvent systems such as methanol/water. We recommend acidic solvent mixtures containing acetonitrile for extraction of the E. coli metabolome.
We followed 68 cellular metabolites after carbon or nitrogen starvation of Escherichia coli and Saccharomyces cerevisiae, using a filter-culture methodology that allows exponential growth, nondisruptive nutrient removal, and fast quenching of metabolism. Dynamic concentration changes were measured by liquid chromatography-tandem mass spectrometry and viewed in clustered heat-map format. The major metabolic responses anticipated from metabolite-specific experiments in the literature were observed as well as a number of novel responses. When the data were analyzed by singular value decomposition, two dominant characteristic vectors were found, one corresponding to a generic starvation response and another to a nutrient-specific starvation response that is similar in both organisms. Together these captured a remarkable 72% of the metabolite concentration changes in the full data set. The responses described by the generic starvation response vector (42%) included, for example, depletion of most biosynthetic intermediates. The nutrient-specific vector (30%) included key responses such as increased phosphoenolpyruvate signaling glucose deprivation and increased ␣-ketoglutarate signaling ammonia deprivation. Metabolic similarity across organisms extends from the covalent reaction network of metabolism to include many elements of metabolome response to nutrient deprivation as well.Escherichia coli ͉ metabolomics ͉ nitrogen/carbon metabolism ͉ Saccharomyces cerevisiae ͉ starvation response T he pathways of cellular metabolism are close to identical across widely divergent organisms (1). The prokaryote Escherichia coli and the eukaryote Saccharomyces cerevisiae share essentially the same metabolic network (2) despite radically different compartmentation. The concentrations and fluxes of metabolites depend on the interactions among this conserved network structure, the cellular environment, and species-specific factors, such as the location, activities, and regulation of metabolic enzymes. Except for a few classic examples, e.g., central carbon metabolism in E. coli and yeast (3-5) and nitrogen assimilation in bacteria (6-8) the effect of environmental nutrient perturbations on the cellular metabolome have not been directly measured.We explored exponentially growing E. coli and S. cerevisiae cultures suddenly deprived of their carbon or nitrogen sources. Metabolic composition can change in as little as a few seconds (9, 10). To get accurate snapshots of the metabolome, we devised a method of growing cells directly on filters to avoid time-consuming procedures (e.g., centrifugation or filtration) before quenching of biochemical activity (11). Transfer of a filter from a plate containing growth medium into cold organic solvent quickly quenches metabolism; transfer to a plate with a different medium composition allows a quick change of the nutrient environment (Fig. 1).For measurement of a number of metabolites simultaneously, we used a liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-MS/...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.