It was previously shown that morphine more potently reduces the affective as compared to the sensory component of nociception, and this effect is independent of morphine's rewarding properties. Here we investigated whether this finding can be generalized to other classes of anti-nociceptive drugs. The effect of oxycodone (0-10 mg/kg, i.p.), tramadol (0-10 mg/kg, i.p.), ibuprofen (0-300 mg/kg, i.p.) and pregabalin (0-31.6 mg/kg, i.p.) on negative affect and mechanical hypersensitivity accompanying carrageenan-induced (0.5% intraplantar) inflammatory nociception was assessed using conditioned place aversion (CPA) and Randall Selitto paw pressure test, respectively. The rewarding effect of these drugs was assessed using conditioned place preference (CPP). All four anti-nociceptive drugs dose-dependently reduced carrageenan-induced CPA and mechanical hypersensitivity. Furthermore all drugs induced CPP, except for ibuprofen. Similar to morphine, oxycodone and tramadol showed a large dissociation of anti-aversive versus anti-nociceptive potency, i.e. 10 times more potent against the affective versus the sensory component of nociception. Oxycodone and tramadol were 30 and 10 times more potent to produce CPP in animals under normal versus painful conditions. Ibuprofen and pregabalin also showed a dissociation of anti-aversive and anti-nociceptive potency, but less pronounced (i.e. three times more potent against the affective component). However, pregabalin showed no dissociation between rewarding potency under normal versus painful conditions. Taken together, these data suggest that the dissociation of rewarding potency in animals under normal versus painful conditions is limited to drugs with an opioid mechanism of action, while the dissociation of anti-aversive and anti-nociceptive potency applies to anti-nociceptive drugs with different mechanisms of action.
Pain is generally considered to have a sensory and an affective component. Clinical research has suggested that morphine more potently attenuates the affective component as compared to the sensory component. Because preclinical nociception models typically focus on the sensory component of nociception, and do not assess the affective component, it is unclear whether this potency difference of morphine can also be found in preclinical models. We therefore adapted the place conditioning paradigm to investigate negative affect accompanying carrageenan-induced (0.5% intraplantar) inflammatory nociception in rats. We found that carrageenan produced clear conditioned place aversion (CPA). Morphine (0.01-10mg/kg i.p.) dose-dependently reduced carrageenan-induced CPA with a minimal effective dose (MED) of 0.03mg/kg. Since morphine has a rewarding effect by itself, morphine-induced conditioned place preference (CPP) was also investigated. Morphine induced CPP with a MED of 1mg/kg, suggesting that the rewarding effect of morphine was not responsible for reducing carrageenan-induced CPA. We also demonstrated that morphine reduced carrageenan-induced mechanical nociception as assessed in the Randall Selitto paradigm with a MED of 1mg/kg. It is concluded that the CPA model allows for an assessment of the negative affective component of carrageenan-induced nociception. Moreover, morphine was able to reduce the affective component of nociception at doses that did not affect the sensory component of nociception, and this effect was not due to its rewarding properties. The fact that this finding mirrors the clinical situation validates the use of the CPA model for assessing the affective component of nociception.
The rewarding effects of drugs of abuse are often studied by means of the conditioned place preference (CPP) paradigm. CPP is one of the most widely used models in behavioral pharmacology, yet its theoretical underpinnings are not well understood, and there are very few studies on the methodological and theoretical aspects of this model. An important drawback of the classical CPP paradigm is that it often does not show dose-dependent results. The persistence of the conditioned response, i.e. the time required until the CPP effect is extinct, may be related to the strength of conditioning, which in turn may be related to the rewarding efficacy of a drug. Resistance to extinction may therefore be a useful additional measure to quantify the rewarding effect of drugs. In the present study we examined the persistence of drug-environment associations after conditioning with morphine (1, 3 and 10 mg/kg i.p.), oxycodone (0.3, 1 and 3 mg/kg i.p.) and heroin (0.05, 0.25 and 0.5 mg/kg i.p.) by repeated retesting in the CPP apparatus (15-min sessions, 5 days/week) until the rats reached extinction (i.e. less than 55% preference over 3 consecutive sessions). Following an unbiased CPP protocol, morphine, oxycodone and heroin induced CPP with minimal effective doses of 3, 1 and 0.25 mg/kg, respectively, and with similar effect sizes for each CPP-inducing dose. The number of sessions required for extinction was positively correlated with the dose of the drug (experiment 1: 18 and 45 sessions for 3 and 10 mg/kg morphine, and 19 and 27 sessions for 1 and 3 mg/kg oxycodone; experiment 2: 12 and 24 sessions for 3 and 10 mg/kg morphine, and 10 and 14 sessions for 0.25 and 0.5 mg/kg heroin). These findings suggest that the use of an extinction paradigm can extend the quantitative assessment of the rewarding effect of drugs – however, within certain limits only. The present paradigm appears to be less suited for comparing the rewarding efficacy of different drugs due to great test-retest variability. Finally, the additional potential gain of information using this paradigm has to be weighed against the considerably large amount of additional time and effort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.