Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects.We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives. Geosphere-Biosphere Program (IGBP) and DIVERSITAS, the TRY database (TRY-not an acronym, rather a statement of sentiment; https ://www.try-db.org; Kattge et al., 2011) was proposed with the explicit assignment to improve the availability and accessibility of plant trait data for ecology and earth system sciences. The Max Planck Institute for Biogeochemistry (MPI-BGC) offered to host the database and the different groups joined forces for this community-driven program. Two factors were key to the success of TRY: the support and trust of leaders in the field of functional plant ecology submitting large databases and the long-term funding by the Max Planck Society, the MPI-BGC and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, which has enabled the continuous development of the TRY database.
The loss of megafauna at the terminal Pleistocene has been linked to a wide range of Earth-system-level changes, such as altered greenhouse gas budgets, fire regimes and biome-level vegetation changes. Given these influences and feedbacks, might part of the solution for mitigating anthropogenic climate change lie in the restoration of extant megafauna to ecosystems? Here, we explore the potential role of trophic rewilding on Earth's climate system. We first provide a novel synthesis of the various ways that megafauna interact with the major drivers of anthropogenic climate change, including greenhouse gas storage and emission, aerosols and albedo. We then explore the role of rewilding as a mitigation tool at two scales: (i) current and near-future opportunities for national or regional climate change mitigation portfolios, and (ii) more radical opportunities at the global scale. Finally, we identify major knowledge gaps that complicate the complete characterization of rewilding as a climate change mitigation strategy. Our perspective is urgent since we are losing the Earth's last remaining megafauna, and with it a potential option to address climate change. This article is part of the theme issue ‘Trophic rewilding: consequences for ecosystems under global change’.
The loss of apex consumers (large mammals at the top of their food chain) is a major driver of global change [1]. Yet, research on the two main apex consumer guilds, large carnivores [2] and megaherbivores [3], has developed independently, overlooking any potential interactions. Large carnivores provoke behavioral responses in prey [1, 4], driving prey to distribute themselves within a "landscape of fear" [5] and intensify their impacts on lower trophic levels in low-risk areas [6], where they may concentrate nutrients through localized dung deposition [7, 8]. We suggest, however, that megaherbivores modify carnivore-induced trophic cascades. Megaherbivores (>1,000 kg [9]) are largely invulnerable to predation and should respond less to the landscape of fear, thereby counteracting the effects of fear-triggered trophic cascades. By experimentally clearing plots to increase visibility and reduce predation risk, we tested the collective role of both apex consumer guilds in influencing nutrient dynamics in African savanna. We evaluated whether megaherbivores could counteract a behaviorally mediated trophic cascade by redistributing nutrients that accumulate through fear-driven prey aggregations. Our experiment showed that mesoherbivores concentrated fecal nutrients in more open habitat, but that megaherbivores moved nutrients against this fear-driven nutrient accumulation by feeding within the open habitat, yet defecating more evenly across the risk gradient. This work adds to the growing recognition of functional losses that are likely to have accompanied megafaunal extinctions by contributing empirical evidence from one of the last systems with a functionally complete megaherbivore assemblage. Our results suggest that carnivore-induced trophic cascades work differently in a world of giants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.