Model Predictive Controllers (MPC) in building Heating Ventilation and Air Conditioning (HVAC) systems have demonstrated significant energy savings when compared to typical on/off controllers. MPCs require information about the building’s thermal dynamics which is challenging to model, especially for older structures without buildings specifications. This research investigates the ability to develop a grey box thermal dynamic model that can determine the net thermal dynamics, without any building construction information. Sensors were installed within a test cell to monitor the building automation system (BAS) points, and collect building element surface temperature data. The simulation program Simulink was used to develop and test iterations of grey box models. The final model, that relies solely on BAS points, is able to predict the ambient temperature for a 3-hour Prediction Window to within 1.7% accuracy. This model demonstrates the potential for more buildings to implement HVAC MPC systems with grey box thermal dynamic modeling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.