A photoinduced cascade strategy leading to a variety of differentially functionalised nitriles and ketones has been developed. These reactions rely on the oxidative generation of iminyl radicals from simple oximes. Radical transposition by C(sp3)−(sp3) and C(sp3)−H bond cleavage gives access to distal carbon radicals that undergo SH2 functionalisations. These mild, visible‐light‐mediated procedures can be used for remote fluorination, chlorination, and azidation, and were applied to the modification of bioactive and structurally complex molecules.
The selective functionalization of C(sp3)−H bonds at distal positions to functional groups is a challenging task in synthetic chemistry. Reported here is a photoinduced radical cascade strategy for the divergent functionalization of amides and protected amines. The process is based on the oxidative generation of electrophilic amidyl radicals and their subsequent transposition by 1,5‐H‐atom transfer, resulting in remote fluorination, chlorination and, for the first time, thioetherification, cyanation, and alkynylation. The process is tolerant of most common functional groups and delivers useful building blocks that can be further elaborated. The utility of this strategy is demonstrated through the late‐stage functionalization of amino acids and a dipeptide.
Aphotoinduced cascade strategy leading to avariety of differentially functionalised nitriles and ketones has been developed. These reactions rely on the oxidative generation of iminyl radicals from simple oximes.R adical transposition by C(sp 3 ) À (sp 3 )and C(sp 3 ) À Hbond cleavage gives access to distal carbon radicals that undergo S H 2f unctionalisations.T hese mild, visible-light-mediated procedures can be used for remote fluorination, chlorination, and azidation, and were applied to the modification of bioactive and structurally complex molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.