The availability of these genes and the development of a method for gene disruption and replacement in S. nodosus should allow production of novel amphotericins. A panel of analogues could lead to identification of derivatives with increased solubility, improved biological activity and reduced toxicity.
It is unclear what role the experimental drug and convalescent plasma had in the recovery of these patients. Prospective clinical trials are needed to delineate the role of investigational therapies in the care of patients with EVD.
Amphotericin B is a medically important antifungal antibiotic that is produced by Streptomyces nodosus. Genetic manipulation of this organism has led to production of the first amphotericin analogues by engineered biosynthesis. Here, these studies were extended by sequencing the chromosomal regions flanking the amphotericin polyketide synthase genes, and by refining the phage KC515 transduction method for disruption and replacement of S. nodosus genes. A hybrid vector was constructed from KC515 DNA and the Escherichia coli plasmid pACYC177. This vector replicated as a plasmid in E. coli and the purified DNA yielded phage plaques on Streptomyces lividans after polyethylene glycol (PEG)-mediated transfection of protoplasts. The left flank of the amphotericin gene cluster was found to include amphRI, RII, RIII and RIV genes that are similar to regulatory genes in other polyene biosynthetic gene clusters. One of these regulatory genes, amphRI, was found to have a homologue, amphRVI, located in the right flank at a distance of 127 kbp along the chromosome. However, disruption of amphRVI using the hybrid vector had no effect on the yield of amphotericin obtained from cultures grown on production medium. The hybrid vector was also used for precise deletion of the DNA coding for two modules of the AmphC polyketide synthase protein. Analysis by UV spectrophotometry revealed that the deletion mutant produced a novel pentaene, with reduced antifungal activity but apparently greater water-solubility than amphotericin B. This shows the potential for use of the new vector in engineering of this and other biosynthetic pathways in Streptomyces.
Amphotericin Biosynthesis in Streptomyces nodosus: Deductions from Analysis of Polyketide Synthase and Late Genes Figure 3 in this article (Chem. Biol. 8, 713-723) contains errors. In the drawings of the acyl intermediates, the methyl stereochemistry and the alcohol stereochemistry introduced by extension module 2 are incorrect. The alcohol stereochemistry introduced by extension module 12 is also incorrectly drawn. In each case, the stereochemistry is opposite to what would be inferred from the absolute structure of amphotericin B. The corrected figure is printed below.
Failure to confirm genotype may have led to conclusions that this polymorphism is not associated with sepsis or outcome. Our observations have implications for the conduct and evaluation of studies of complex genetic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.