BackgroundLocomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood.ObjectiveDetermine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA).MethodsThe locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response.ResultsPersons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking.ConclusionsReactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb.
Given its apparent representation of cumulative (vs peak) loads, this feasibility study investigates vertical ground reaction impulse (vGRI) as a real-time biofeedback variable for gait training aimed at reducing lower limb loading. Fifteen uninjured participants (mean age = 27 y) completed 12 2-min trials, 1 at each combination of 4 walking speeds (1.0, 1.2, 1.4, and 1.6 m/s) and 3 targeted reductions in vGRI (5, 10, and 15%) of the assigned ("target") limb, with the latter specified relative to an initial baseline (no feedback) condition at each speed. The ability to achieve targeted reductions was assessed using step-by-step errors between measured and targeted vGRI. Mean (SD) errors were 5.2% (3.7%); these were larger with faster walking speeds but consistent across reduction targets. Secondarily, we evaluated the strategy used to modulate reductions (ie, stance time or peak vertical ground reaction force [vGRF]) and the resultant influences on knee joint loading (external knee adduction moment [EKAM]). On the targeted limb, stance times decreased (P < .001) with increasing reduction target; first and second peaks in vGRF were similar (P > .104) across all target conditions. While these alterations did not significantly reduce EKAM on the target limb, future work in patients with knee pathologies is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.